Answer:
true
Explanation:
the more energy a wave has the greater the amplitude is
Answer:
A) 22.4L
Explanation:
we know, ideal gas law states
PV=nRT
V=nRT/P
At STP,
T= 273.15K P=1atm R=0.082L.atm/mol/K n=1 mole
V=(1*0.082*273.15)/ 1
V=22.4L
For a reaction to occur, there should be mobility of ions in reactant side.
If the reactant is larger, its mobility will be lesser than that of smaller ones.
So reactants smaller in size have higher mobility which makes reaction faster.
Hence D is the correct option.
Hope this helps, have a great day/night ahead!
Answer:
There are many properties that scientists use to describe waves. They include amplitude, frequency, period, wavelength, speed, and phase. Each of these properties is described in more detail below. When drawing a wave or looking at a wave on a graph, we draw the wave as a snapshot in time.
Explanation:
Answer:
Wide melting point range - impure sample with multiple compounds
Experimental melting point is close to literature value - pure sample of a single compound
Experimental melting point is below literature value - impure sample with multiple compounds
Narrow melting point range - pure sample of a single compound
Explanation:
The melting point of substances are easily obtainable from literature such as the CRC Handbook of Physics and Chemistry.
A single pure substance is always observed to melt within a narrow temperature range. This melting temperature is always very close to the melting point recorded in literature for the pure compound.
However, an impure sample with multiple compounds will melt over a wide temperature range. We also have to recall that impurities lower the melting point of a pure substance. Hence, the experimental melting point of an impure sample with multiple compounds is always below the literature value.