I can't answer this question without a figure. I've found a similar problem as shown in the first picture attached. When adding vectors, you don't have to add the magnitudes only, because vectors also have to factor in the directions. To find the resultant vector C, connect the end tails of the individual vectors.
<em>The red line (second picture) represents the vector C.</em>
Answer:
see explanation
Explanation:
by my calculations, i believe it may be because they have to pretend to be in space.
Answer:
See the attached image and the explanation below
Explanation:
We must draw a schematic of the described problem, after the sketch it is necessary to make a free body diagram, at the time before and after cutting the cord.
These free body diagrams can be seen in the attached image.
First we perform a sum of forces on the x & y axes before cutting the cord, to be able to find the T tension of the wire. (This analysis can be seen in the attached image).
In this way we get the T-wire tension equation, before cutting.
Now we make another free body diagram, for the moment when the wire is cut (see in the attached diagram).
It is important to clarify that when the cord is cut, the system will no longer be in statically, therefore newton's second law will be used for summation of forces which will be equal to the product of mass by acceleration.
Finally with equations 1 and 2 we can find the K ratio.
Answer:
273.15
Explanation:
So that's three over two times 1.38 times ten to the minus twenty-three joules per Kelvin, times 5500 degrees Celsius, the surface of the sun converted into Kelvin by adding 273.15. This works out to 1.20 times ten to the minus nineteen joules. So that's the average kinetic energy of hydrogen atoms.