1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhenek [66]
3 years ago
5

Two coins lie 1.5 meters apart on a table. They carry identical electric charges. Approximately how

Physics
1 answer:
Vanyuwa [196]3 years ago
5 0
I don’t have any of the problem I can get it to my computer for my work
You might be interested in
Which of the following affects the rate constant of a reaction?
Dennis_Churaev [7]
Arrhenius' equation relates the dependence of rate constant of a chemical reaction to the temperature. The equation below is the Arrhenius equation
k = Ae ^{{ \frac{-Ea}{RT} } } where k is the rate constant, T is the absolute temperature. As the temperature of the system increases, the rate constant also increases and vice versa.
3 0
3 years ago
Science requires theories that can be tested by research. true false
dezoksy [38]
True Requires the development of theories that can be tested by systematic research.
3 0
3 years ago
Physics help please
zhuklara [117]

Answer: 37.981 m/s

Explanation:

This situation is related to projectile motion or parabolic motion, in which the travel of the ball has two components: <u>x-component</u> and <u>y-component.</u> Being their main equations as follows:

<u>x-component: </u>

x=V_{o}cos\theta t   (1)

Where:

x=52 m is the point where the ball strikes ground horizontally

V_{o} is the ball's initial speed

\theta=0 because we are told the ball is thrown horizontally

t is the time since the ball is thrown until it hits the ground

<u>y-component: </u>

y=y_{o}+V_{o}sin\theta t+\frac{gt^{2}}{2}   (2)

Where:

y_{o}=120m  is the initial height of the ball

y=0  is the final height of the ball (when it finally hits the ground)

g=-9.8m/s^{2}  is the acceleration due gravity

Knowing this, let's start by finding t from (2):

<u></u>

0=y_{o}+V_{o}sin(0\°) t+\frac{gt^{2}}{2}   (3)

0=y_{o}+\frac{gt^{2}}{2}  

t=\sqrt{\frac{-2 y_{o}}{g}}   (4)

t=\sqrt{\frac{-2 (120 m)}{-9.8m/s^{2}}}   (5)

t=4.948 s   (6)

Then, we have to substitute (6) in (1):

x=V_{o}cos(0\°) t   (7)

And find V_{o}:

V_{o}=\frac{x}{t}   (8)

V_{o}=\frac{52 m}{4.948 s}   (9)

V_{o}=10.509 m/s   (10)

On the other hand, since we are dealing with constant acceleration (due gravity) we can use the following equation to find the value of the ball's final velocity V:

V=V_{o} + gt (11)

V=10.509 m/s + (-9.8 m/s^{2})(4.948 s) (12)

V=-37.981 m/s (13) This is the ball's final velocity, and the negative sign indicates its direction is downwards.

However, we were asked to find the <u>ball's final speed</u>, which is the module of the ball's final vleocity vector. This module is always positive, hence the speed of the ball just before it strikes the ground is 37.981 m/s (positive).

5 0
2 years ago
A hungry 169169 kg lion running northward at 77.377.3 km/hr attacks and holds onto a 31.731.7 kg Thomson's gazelle running eastw
navik [9.2K]

Answer:  75,242.9 m/s

Explanation:

from the question we are given the following parameters

mass of Lion (ML) = 169,169 kg

velocity of lion (VL) = 777,377.7 m/s

mass of Gazelle (Mg) = 31,731.7 kg

velocity of Gazelle (Vg) = 63,863.8 kg

mass of Lion and Gazelle (M) = 200,900.7 kg

velocity of Lion and Gazelle (V) = ?

The first figure below shows the motion of the Lion and Gazelle with their direction.

The second diagram shows the motion of the Lion and Gazelle with their directions rearranged to form a right angle triangle.

from the triangle formed we can get the velocity of the Lion and Gazelle immediately after collision using their momentum and Phytaghoras theorem

momentum = mass x velocity

momentum of the Lion = 169,169 x 77,377.3 = 13,089,840,463.7 kgm/s

momentum of the Gazelle = 31,731.7 x 63,863.8 = 2,026,506,942.46 kgm/s

momentum of the Lion and Gazelle = 200,900.7  x V

now applying Phytaghoras theorem we have

13,089,840,463.7 + 2,026,506,942.46 =  200,900.7 x V

15,116,347,406.16 = 200,900.7 x V

V = 75,242.9 m/s

7 0
2 years ago
Read 2 more answers
The distance from the Earth to the Sun is 92 868 000 miles.
ANEK [815]
Your answer can be either 92 900 000 or 9.29e+7
6 0
2 years ago
Other questions:
  • Modern wind turbines generate electricity from wind power. The large, massive blades have a large moment of inertia and carry a
    9·1 answer
  • What causes a material to be classified as ferromagnetic?
    13·1 answer
  • Potential energy and kinetic energy are forms of what kind of energy? 1. chemical 2. nuclear 3. electromagnetic 4. heat 5. mecha
    12·1 answer
  • What is the energy equivalent of 5.0kg of mass?
    7·2 answers
  • I need help please anyone
    5·1 answer
  • The vibrations produced by a jackhammer are used to break up pavement. What type of waves did/does the jackhammer produce into t
    11·1 answer
  • a ball is rolled uphill a distance of 3 meters before it slows,stops,and begins to roll back. the ball rolls downhill 6 meters b
    13·1 answer
  • Determine the dimensions (a, b) of an air-filled rectangular waveguide that providessingle mode operation over the frequency ran
    13·1 answer
  • If a car travels 200 m to the east in 8.0s what is the car's average velocity.
    12·1 answer
  • In places such as hospital operating rooms or factories for electronic circuit boards, electric sparks must be avoided. A person
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!