Answer:
(a) 1.58 V
(b) 0.0126 Wb
(c) 0.0493 V
Solution:
As per the question:
No. of turns in the coil, N = 400 turns
Self Inductance of the coil, L = 7.50 mH =
Current in the coil, i =
A
where

Now,
(a) To calculate the maximum emf:
We know that maximum emf induced in the coil is given by:

![e = L\frac{d}{dt}(1680)cos[\frac{\pi t}{0.0250}]](https://tex.z-dn.net/?f=e%20%3D%20L%5Cfrac%7Bd%7D%7Bdt%7D%281680%29cos%5B%5Cfrac%7B%5Cpi%20t%7D%7B0.0250%7D%5D)
![e = - 7.50\times 10^{- 3}\times \frac{\pi}{0.0250}\times \frac{d}{dt}(1680)sin[\frac{\pi t}{0.0250}]](https://tex.z-dn.net/?f=e%20%3D%20-%207.50%5Ctimes%2010%5E%7B-%203%7D%5Ctimes%20%5Cfrac%7B%5Cpi%7D%7B0.0250%7D%5Ctimes%20%5Cfrac%7Bd%7D%7Bdt%7D%281680%29sin%5B%5Cfrac%7B%5Cpi%20t%7D%7B0.0250%7D%5D)
For maximum emf,
should be maximum, i.e., 1
Now, the magnitude of the maximum emf is given by:

(b) To calculate the maximum average flux,we know that:

(c) To calculate the magnitude of the induced emf at t = 0.0180 s:


The reciprocal of the total resistance is equal to the sum of the reciprocals of the component resistances:
1/(120.7 Ω) = 1/<em>R₁</em> + 1/(221.0 Ω)
1/<em>R₁</em> = 1/(120.7 Ω) - 1/(221.0 Ω)
<em>R₁</em> = 1 / (1/(120.7 Ω) - 1/(221.0 Ω)) ≈ 265.9 Ω
Answer : B) The cow pulls back on the girl.
From newton’s third law we know that every action has a reaction force pushing back. So when the girl pulls on a cow, the cow is pulling back on her.
Answer:
A
Explanation:
The answer is A because proton number is the same as atomic number
I think that would be c) mirror because mirrors reflects light and can't create it.