Answer:
22m/s
Explanation:
To find the velocity we employ the equation of free fall: v²=u²+2gh
where u is initial velocity, g is acceleration due to gravity h is the height, v is the velocity the moment it hits the ground, taking the direction towards gravity as positive.
Substituting for the values in the question we get:
v²=2×9.8m/s²×25m
v²=490m²/s²
v=22.14m/s which can be approximated to 22m/s
Answer: the minimum spacing that must be there between two objects on the earth's surface if they are to be resolved as distinct objects by this telescope 6.45 cm
Explanation:
Given that;
diameter of the mirror d = 1.7 m
height h = 180 km = 180 × 10³ m
wavelength λ = 500 nm = 5 × 10⁻⁹ m
Now Angular separation from the peak of the central maximum is expressed as;
sin∅= 1.22 λ / d
sin∅ = (1.22 × 5 × 10⁻⁹) / 1.7
sin∅ = 3.588 × 10⁻⁷
we know that;
sin∅ = object separation / distance from telescope
object separation =
sin∅ × distance from telescope
object separation = 3.588 × 10⁻⁷ × 180 × 10³
object separation =6.45 × 10⁻² m
then we convert to centimeter
object separation = 6.45 cm
Therefore the minimum spacing that must be there between two objects on the earth's surface if they are to be resolved as distinct objects by this telescope 6.45 cm
Answer:
7.9m/s
Explanation:
We are given that
Mass of wagon=40 kg

Tension=
Initial velocity of wagon=
Displacement=s=80 m
Net force applied on wagon=
By using 

We know that

Using the formula


Answer:
-589.05 J
Explanation:
Using work-kinetic energy theorem, the work done by friction = kinetic energy change of the base runner
So, W = ΔK
W = 1/2m(v₁² - v₀²) where m = mass of base runner = 72.9 kg, v₀ = initial speed of base runner = 4.02 m/s and v₁ = final speed of base runner = 0 m/s(since he stops as he reaches home base)
So, substituting the values of the variables into the equation, we have
W = 1/2m(v₁² - v₀²)
W = 1/2 × 72.9 kg((0 m/s)² - (4.02 m/s)²)
W = 1/2 × 72.9 kg(0 m²/s² - 16.1604 m²/s²)
W = 1/2 × 72.9 kg(-16.1604 m²/s²)
W = 1/2 × (-1178.09316 kgm²/s²)
W = -589.04658 kgm²/s²
W = -589.047 J
W ≅ -589.05 J
Answer:
c. 981 watts

Explanation:
Given:
- horizontal speed of treadmill,

- weight carried,

- grade of the treadmill,

<u>Now the power can be given by:</u>

(where grade is the rise of the front edge per 100 m of the horizontal length)
