Answer:
Explanation:
a) Power consumption is 4100 J/min / 60 s/min = 68.3 W(atts)
work done raised the potential energy
b) 75(9.8)(1000) / (3(3600)) = 68.055555... 68.1 W
c) efficiency is 68.1 / 68.3 = 0.99593... or nearly 100%
Not a very likely scenario.
1. Velocity at which the packet reaches the ground: 121.2 m/s
The motion of the packet is a uniformly accelerated motion, with constant acceleration
directed downward, initial vertical position
, and initial vertical velocity
. We can use the following SUVAT equation to find the final velocity of the packet after travelling for d=750 m:

substituting, we find

2. height at which the packet has half this velocity: 562.6 m
We need to find the heigth at which the packet has a velocity of

In order to do that, we use again the same SUVAT equation substituting
with this value, so that we find the new distance d that the packet travelled from the helicopter to reach this velocity:

Which means that the heigth of the packet was

Negative
Because the car is moving up and the bug is moving down. but it also depends on the weather so choice between one of those two I think is Negative but I may be wrong.
Answer:
A heat engine is a device that converts internal energy into work. Internal energy is increased by the addition of heat. The efficiency of a heat engine is a measurement of how efficiently it works. Efficiency compares the amount of useful energy extracted from a process to the total energy input. The heat engine will be more efficient if the percentage is higher.
Explanation:
Answer:
Electric field acting on the electron is 127500 N/C.
Explanation:
It is given that,
Mass of an electron, 
Charge on electron, 
Initial speed of electron, u = 0
Final speed of electron, 
Distance covered, s = 2 cm = 0.02 m
We need to find the electric field required. Firstly, we will find the acceleration of the electron from third equation of motion as :



According to Newton's law, force acting on the electron is given by :
F = ma


Electric force is given by :
F = q E, E = electric field


E = 127500 N/C
So, the electric field is 127500 N/C. Hence, this is the required solution.