The planet closest to the sun; Mercury.
When discussing Newton's laws of motion, particularly Newton's third law of motion, the terms that almost everyone will use are "action" and "reaction".
You must not take this to mean that they understand what they're talking about.
Matter can be many things, but is mostly made of atoms. Atoms are small things that cannot be seen directly, as lights either passes through it or alters it. However, we know that atoms are made of 3 parts, those being the proton, neutron, and electron.
Protons have a positive electromagnetic charge.
Neutrons have no charge.
Electrons have a negative charge equal to the protons positive charge.
Protons and neutrons make up what's called the nucleus, which is orbited by the electrons.
Protons and neutrons also share another thing in common, that being their composition.
Until relatively recently, we thought that these were the smallest particles in the universe, and indestructible. However, modern discoveries have revealed that they are actually made of quarks and gluons.
These are actually indestructible, being part of the group that is elementary particles.
Given:
The given value is
.
To find:
The value of the given expression by using the Binomial approximation.
Explanation:
We have,

It can be written as:

![[\because (1+x)^n=1+nx]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%281%2Bx%29%5En%3D1%2Bnx%5D)


Therefore, the approximate value of the given expression is 1.0002.
Answer:
Diffusing the gradient ensures that most of the molecules in high concentration zone will wind up in the previously low concentration by the spontaneous movement of small molecules.
Explanation:
A gradient of concentration is the difference between in concentration of one place / area substance to different area. Having a molecule flow down its concentration gradient means moving the molecules from hypotonic areas to the concentration hypertonic areas
Diffusing the gradient ensures that most of the molecules in high concentration zone will wind up in the previously low concentration by the spontaneous movement of small molecules.