Answer:
In an ideal pulley system is assumed as a perfect system, and the efficiency of the pulley system is taken as 100% such that there are no losses of the energy input to the system through the system's component
However, in a real pulley system, there are several means through which energy is lost from the system through friction, which is converted into heat, sound, as well as other forms of energy
Given that the mechanical advantage = Force output/(Force input), and that the input force is known, the energy loss comes from the output force which is then reduced, and therefore, the Actual Mechanical Advantage (AMA) is less than the Ideal Mechanical Advantage of an "ideal" pulley system
The relationship between the actual and ideal mechanical advantage is given by the efficiency of the pulley system as follows;

Explanation:
1. it is difficult to search for it . Because infrared rays will never penetrate through earth atmosphere.
2. we are unaware of how it looks like and we only know it is red and will glow . A damaged star also looks like this.
3. Dust also makes is hard to detect Dyson spheres . So we will get confused between Dyson sphere and a star surrounded by dust.
It’s physical something you can physically do
Answer:
(A) 3.1 m/s
(B) 2.0 s
Explanation:
At the minimum speed, the force of gravity equals the centripetal force.
mg = m v² / r
v = √(gr)
v = √(9.8 m/s² × 1.0 m)
v = 3.1 m/s
The time is the circumference divided by the speed.
t = (2π × 1.0 m) / (3.1 m/s)
t = 2.0 s
Given:
F = ax
where
x = distance by which the rubber band is stretched
a = constant
The work done in stretching the rubber band from x = 0 to x = L is
![W=\int_{0}^{L} Fdx = \int_{0}^{L}ax \, dx = \frac{a}{2} [x^{2} ]_{0}^{L} = \frac{aL^{2}}{2}](https://tex.z-dn.net/?f=W%3D%5Cint_%7B0%7D%5E%7BL%7D%20Fdx%20%3D%20%5Cint_%7B0%7D%5E%7BL%7Dax%20%5C%2C%20dx%20%3D%20%5Cfrac%7Ba%7D%7B2%7D%20%20%5Bx%5E%7B2%7D%20%5D_%7B0%7D%5E%7BL%7D%20%3D%20%20%5Cfrac%7BaL%5E%7B2%7D%7D%7B2%7D%20)
Answer: