1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tom [10]
3 years ago
7

Tremendous energy is released by nuclear reactions is a measure of the energy required to bond the nucleus together. Where does

this energy come from?
Physics
1 answer:
Harlamova29_29 [7]3 years ago
5 0

Answer:

Fission is the opposite of fusion and releases energy only when heavy nuclei are split. As noted in Fusion, energy is released if the products of a nuclear reaction have a greater binding energy per nucleon than the parent nuclei.

The amount of energy released during nuclear fission is millions of times more efficient per mass than that of coal considering only 0.1 percent of the original nuclei is converted to energy. Daughter nucleus, energy, and particles such as neutrons are released as a result of the reaction

You might be interested in
A high diver of mass 51.7 kg steps off a board 10.0 m above the water and falls vertical to the water, starting from rest. If he
zmey [24]

Answer:

851.33 N

Explanation:

Using newton;s equation of motion,

v² = u² + 2gh ......... Equation 1

Where v = final velocity, u = initial velocity, g = acceleration due to gravity, h = height

Given: u = 0 m/s(from rest), h = 10 m g = 9.8 m/s².

Substitute into equation 1

v² = 0² + 2(9.8)(10)

v² = 196

v = √196

v = 14 m/s.

Note: As the Diver touches the water,  u = 14 m/s and v = 0 m/s( stopped)

Using,

d = (v+u)t/2 .............. equation 2

Where d = distance moved by the diver in water before its motion stopped, t = time taken before it comes to rest

Given: v = 0 m/s, u = 14 m/s t = 2.10 s

Substitute into equation 2

d = (0+14)2.1/2

d = 14.7 m.

Finally

work done by the water to stop the diver = potential energy of the diver

F×d = mgh'................Equation 3

Where F = force of the diver in water, d = distance of the diver in the water, m = mass of the diver, g = acceleration due to gravity, h' = height of the diver from the point of fall to the point where he comes to rest

making F the subject of the equation,

F = mgh/d ............ Equation 4

Given: m = 51.7 kg, h = 10 m, g = 9.8 m/s², d = 14.7 m.

Substitute into equation 4

F = 51.7(10+14.7)(9.8)/14.7

F = 851.33 N

Hence the upward force the water exert on her = 851.33 N

8 0
3 years ago
ANSWER ASAP PLZZZZ!!!!!!!!
igor_vitrenko [27]

Answer: your correct answer is a i took the test

Please i need brainlist i need one more and i level up :)

6 0
3 years ago
Describe the difference between a soil horizon and a soil profile
mario62 [17]

Soil profile includes all the sections/ horizons of the vertical soil depth from top to bottom including the transitions from one horizon to another. A soil horizon is a distinct layer/section of soil with more or less the same texture. Therefore, a soil profile is made of soil horizons.  

5 0
3 years ago
Read 2 more answers
The coordinates of a bird flying in the xy-plane are given by x(t)=αt and y(t)=3.0m−βt2, where α=2.4m/s and β=1.2m/s2.part a:Cal
8090 [49]
Α=2.4 \frac{m}{s}

β=1.2 \frac{m}{s^2}

x(t)=at

y(t)=3-βt^2

Vx(t)=α

Vy(t)=-2βt

vectorV=[α;-2βt]

ax(t)=0

ay(t)=-2βt

vector a [0;-2βt]


3 0
4 years ago
A running mountain lion can make a leap 10.0 m long, reaching a maximum height of 3.0 m.?a.What is the speed of the mountain lio
Arisa [49]

Answer:

What is the speed of the mountain lion as it leaves the ground?

9.98m/s

At what angle does it leave the ground?

50.16°

Explanation:

This is going to be long, so if you want to see how it was solved refer to the attached solution. If you want to know the step by step process, read on.

To solve this, you will need use two kinematic equations and SOHCAHTOA:

d = v_it + \dfrac{1}{2}at^{2}\\\\vf = vi + at

With these formulas, we can derive formulas for everything you need:

Things you need to remember:

  • A projectile at an angle has a x-component (horizontal movement) and y-component (vertical movement), which is the reason why it creates an angle.
  • Treat them separately.
  • At maximum height, the vertical final velocity is always 0 m/s going up. And initial vertical velocity is 0 m/s going down.
  • Horizontal movement is not influenced by gravity.
  • acceleration due to gravity (a) on Earth is constant at 9.8m/s

First we need to take your given:

10.0 m long (horizontal) and maximum height of 3.0m (vertical).

d_x=10.0m\\d_y=3.0m

What your problem is looking for is the initial velocity and the angle it left the ground.

Vi = ?     Θ =?

Vi here is the diagonal movement and do solve this, we need both the horizontal velocity and the vertical velocity.

Let's deal with the vertical components first:

We can use the second kinematic equation given to solve for the vertical initial velocity but we are missing time. So we use the first kinematic equation to derive a formula for time.

d_y=V_i_yt+\dfrac{1}{2}at^{2}

Since it is at maximum height at this point, we can assume that the lion is already making its way down so the initial vertical velocity would be 0 m/s. So we can reduce the formula:

d_y=0+\dfrac{1}{2}at^{2}

d_y=\dfrac{1}{2}at^{2}

From here we can derive the formula of time:

t=\sqrt{\dfrac{2d_y}{a}}

Now we just plug in what we know:

t=\sqrt{\dfrac{(2)(3.0m}{9.8m/s^2}}\\t=0.782s

Now that we know the time it takes to get from the highest point to the ground. The time going up is equal to the time going down, so we can use this time to solve for the intial scenario of going up.

vf_y=vi_y+at

Remember that going up the vertical final velocity is 0m/s, and remember that gravity is always moving downwards so it is negative.

0m/s=vi_y+-9.8m/s^{2}(0.782s)\\-vi_y=-9.8m/s^{2}(0.782s)\\-vi_y=-7.66m/s\\vi_y=7.66m/s

So we have our first initial vertical velocity:

Viy = 7.66m/s

Next we solve for the horizontal velocity. We use the same kinematic formula but replace it with x components. Remember that gravity has no influence horizontally so a = 0:

d_x=V_i_xt+\dfrac{1}{2}0m/s^{2}(t^{2})\\d_x=V_i_xt

But horizontally, it considers the time of flight, from the time it was released and the time it hits the ground. Also, like mentioned earlier the time going up is the same as going down, so if we combine them the total time in flight will be twice the time.

T= 2t

T = 2 (0.782s)

<em>T = 1.564s</em>

<em>So we use this in our formula:</em>

<em>d_x=V_i_xT\\\\10.0m=Vi_x(1.564s)\\\\\dfrac{10.0m}{1.564s}=V_i_x\\\\6.39m/s=V_i_x</em>

Vix=6.39m/s

Now we have the horizontal and the vertical component, we can solve for the diagonal initial velocity, or the velocity the mountain lion leapt and the angle, by creating a right triangles, using vectors (see attached)

To get the diagonal, you just use the Pythagorean theorem:

c²=a²+b²

Using it in the context of our problem:

Vi^{2}=Viy^2+Vix^2\\Vi^2=(7.66m/s)^2+(6.39m/s)^2\\\sqrt{Vi}=\sqrt{(7.66m/s)^2+(6.39m/s)^2}\\\\Vi=9.98m/s

The lion leapt at 9.98m/s

Using SOHCAHTOA, we know that we can TOA to solve for the angle, because we have the opposite and adjacent side:

Tan\theta=\dfrac{O}{A}\\\\Tan\theta=\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{7.66m/s}{6.39m/s}\\\\\theta=50.17

The lion leapt at an angle of 50.16°.

6 0
3 years ago
Other questions:
  • What other structures is it near hypothalamus?
    10·1 answer
  • 6. A boat with speed of 1.20 km/h relative to the water is heading for a dock 2.29
    11·1 answer
  • Please help me. Thank you!
    10·1 answer
  • A 2.85 kg fish is attached to the lower end of a vertical spring that has negligible mass and force constant 875 N/m. The spring
    13·1 answer
  • Which of the following effects is produced by the high surface tension of water? Which of the following effects is produced by t
    14·1 answer
  • How does a physicist answer a specific question
    5·1 answer
  • Why do farmers need to use strategies like crop rotation?
    15·2 answers
  • Enumera las funciones del Estado​
    11·1 answer
  • If the net force acting on an object is zero, its inertia is also zero.<br> True or false
    15·1 answer
  • A racecar begins at rest and accelerates to 25 m/s at a rate of 6.25 m/s2. What distance does the racecar cover?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!