According to Boyle-Mariotte:
p₁V₁=p₂V₂=>V₂=p₁V₁/p₂= 0.0024*101.70/ 84.16=0.0028 m³
Decompose the forces acting on the block into components that are parallel and perpendicular to the ramp. (See attached free body diagram. Forces are not drawn to scale)
• The net force in the parallel direction is
∑ <em>F</em> (para) = -<em>mg</em> sin(21°) - <em>f</em> = <em>ma</em>
• The net force in the perpendicular direction is
∑ <em>F</em> (perp) = <em>n</em> - <em>mg</em> cos(21°) = 0
Solving the second equation for <em>n</em> gives
<em>n</em> = <em>mg</em> cos(21°)
<em>n</em> = (0.200 kg) (9.80 m/s²) cos(21°)
<em>n</em> ≈ 1.83 N
Then the magnitude of friction is
<em>f</em> = <em>µn</em>
<em>f</em> = 0.25 (1.83 N)
<em>f</em> ≈ 0.457 N
Solve for the acceleration <em>a</em> :
-<em>mg</em> sin(21°) - <em>f</em> = <em>ma</em>
<em>a</em> = (-0.457N - (0.200 kg) (9.80 m/s²) sin(21°))/(0.200 kg)
<em>a</em> ≈ -5.80 m/s²
so the block is decelerating with magnitude
<em>a</em> = 5.80 m/s²
down the ramp.
D = (1/2)·at²
where d is the distance fallen, a is the acceleration (g in this problem), and t is the time
d = (1/2)·(9.8 m/s²)·(30 s)² = (1/2)·(9.8)·(900) m
d = 4410 m
The answer is b) 4410 m
Note: the mass of the raindrop is irrelevant since the acceleration due to gravity is independent of mass. (Galileo's Leaning Tower of Pisa experiment)
Answer:So You Decide To Move Closer To Give The Conversation A Sound Level Of 80.0dB Instead. ... You are trying to overhear a juicy conversation, but from your distance of 24.0m , it sounds like only an average whisper of 40.0dB .
Explanation:
Displacement only measure how far between the starting and ending point. In this case, Lisa walks around the block as a circle so the starting point is the same as the ending point. Thus, displacement is 0mile.
On the other hand, distance measures exactly how far she walks. In this case, the distance is 1 mile, same as the perimeter of the block.