Answer:
Explanation:
Centripetal acceleration's equation is:
where v is the velocity of the object (moon II) and r is the radius. We have the radius, but we don't have the velocity, and we can't solve for acceleration until we do have it. Assuming moon II is a circle, or close enough to be called a circle, it has a circumference.
C = 2πr. If we can find the circumference of the circle, we can plug in the orbital period for the time, the circumference for the distance, and solve for velocity in d = rt. So let's do that and see what happens.
C = 2(3.14)(9.0 × 10⁷) and
C = d = 5.7 × 10⁸. Plugging in and solving for v:
and
v = 1.9 × 10³. That is the velocity we can use in the centripetal acceleration equation.
and

These are fun!
Answer:
Kepler
Explanation:
Kepler discovered that the orbits of planets are ellipses.
Explanation:
In physical sciences, mechanical energy is the sum of potential energy and kinetic energy. It is the macroscopic energy associated with a system. The principle of conservation of mechanical energy states that if an isolated system is subject only to conservative forces, then the mechanical energy is constant. If an object moves in the opposite direction of a conservative net force, the potential energy will increase; and if the speed (not the velocity) of the object changes, the kinetic energy of the object also changes. In all real systems, however, nonconservative forces, such as frictional forces, will be present, but if they are of negligible magnitude, the mechanical energy changes little and its conservation is a useful approximation. In elastic collisions, the kinetic energy is conserved, but in inelastic collisions some mechanical energy may be converted into thermal energy. The equivalence between lost mechanical energy (dissipation) and an increase in temperature was discovered by James Prescott Joule.
Answer:

Explanation:
q = Charge of proton = 
r = Radius of circle = 
v = Velocity of proton = 
Magnetic moment is given by

The magnetic moment associated with this motion is 
Explanation:
A wave is a disturbance in a medium. For example, when some pebbles are thrown in water, the water particles gets disturbed. A wave is characterized by the following parameters i.e.
Frequency
Wavelength etc
The number of oscillations or vibrations in a medium is called the frequency of a wave.
Also, the distance between two consecutive crests and troughs is called the wavelength of a wave. The relationship between the wavelength and the frequency of a wave is given by :
Speed of wave = frequency × wavelength