<h3><u>Question: </u></h3>
The equation for the speed of a satellite in a circular orbit around the Earth depends on mass. Which mass?
a. The mass of the sun
b. The mass of the satellite
c. The mass of the Earth
<h3><u>Answer:</u></h3>
The equation for the speed of a satellite orbiting in a circular path around the earth depends upon the mass of Earth.
Option c
<h3><u>
Explanation:
</u></h3>
Any particular body performing circular motion has a centripetal force in picture. In this case of a satellite revolving in a circular orbit around the earth, the necessary centripetal force is provided by the gravitational force between the satellite and earth. Hence
.
Gravitational force between Earth and Satellite: 
Centripetal force of Satellite :
Where G = Gravitational Constant
= Mass of Earth
= Mass of satellite
R= Radius of satellite’s circular orbit
V = Speed of satellite
Equating
, we get
Speed of Satellite 
Thus the speed of satellite depends only on the mass of Earth.
"When we do experiments it's a good idea to do multiple trials, that is, do the same experiment lots of times. When we do multiple trials of the same experiment, we can make sure that our results are consistent and not altered by random events. Multiple trials can be done at one time."
<span>The bullfrog is sitting at rest on the log. The force of gravity pulls down on the bullfrog. We can find the weight of the bullfrog due to the force of gravity.
weight = mg = (0.59 kg) x (9.80 m/s^2)
weight = 5.782 N
The bullfrog is pressing down on the log with a force of 5.782 newtons. Newton's third law tells us that the log must be pushing up on the bullfrog with a force of the same magnitude. Therefore, the normal force of the log on the bullfrog is 5.782 N</span>
Here's what you need to know about waves:
Wavelength = (speed) / (frequency)
Now ... The question gives you the speed and the frequency,
but they're stated in unusual ways, with complicated numbers.
Frequency: How many each second ?
The thing that's making the waves is vibrating 47 times in 26.9 seconds.
Frequency = (47) / (46.9 s) = 1.747... per second. (1.747... Hz)
Speed: How far a point on a wave travels in 1 second.
The crest of one wave travels 4.16 meters in 13.7 seconds.
Speed = (4.16 m / 13.7 sec) = 0.304... m/s
Wavelength = (speed) / (frequency)
Wavelength = (0.304 m/s) / (1.747 Hz) = 0.174 meter per second
Meters per second squared:

If you think about it, acceleration is about how fast speed changes. Speed is measured in meters per second:

So if you take that and just measure it over time, you get meters per second squared.