1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ivann1987 [24]
2 years ago
14

Gavin made a wooden planter in the shape of a cube. He measured the inside of the planter and found that each side is 38.75 cm l

ong. To the nearest hundredth, how much dirt does Gavin need to completely fill his planter?
Mathematics
2 answers:
notka56 [123]2 years ago
7 0

Answer:

3/5

Step-by-step explanation:

iogann1982 [59]2 years ago
4 0

Answer:

58,185.55

Step-by-step explanation:

You might be interested in
A triangular pyramid has these dimensions.
marishachu [46]

Answer: 42 cm3

Step-by-step explanation:

7 0
3 years ago
Perform all the steps to evaluate this expression.
xz_007 [3.2K]

Answer: the answer is 8

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
I’m on a test so I need help
sladkih [1.3K]
The answer is 2 y2 -9
4 0
3 years ago
Mrs. Low has 12 bags, each containing 25 sweets. She divides the sweets among 30 boys equally. How many sweets does each boy get
irakobra [83]
Each boy gets 10 sweets.

12×25=300÷30=10//
6 0
3 years ago
When a person is breathing normally the amount of air in their lawns varies sinusoidally. When full Karen’s lungs hold 2.8 L of
makkiz [27]

Answer:

A(t) = 2.2\sin \frac{(t - 2)\pi }{6} + 0.6

Step-by-step explanation:

Let the function of quantity in the lung of air be A(t)

So A(t) \alpha \sin (\frac{t - \alpha }{k} )

so, A(t) = Amax sin t + b

A(t) = 2.8t⇒ max

A(t) = 0.6t ⇒ min

max value of A(t) occur when sin(t) = 1

and min value of A(t) = 0

So b = 0.6

and A(max) = 2.2

A(t) = 2.2\sin \frac{(t)}{k} + 0.6

at t = 2 sec volume of a is 0.6

So function reduce to

A(t) = 2.2\sin \frac{(t - 2)}{k} + 0.6

and t = 5 max value of volume is represent

so,

\sin \frac{t - \alpha }{k} = 1

\frac{t - 2}{k} = \frac{\pi }{2} when t = 5

\frac{6}{\pi } = k

so the equation becomes

A(t) = 2.2\sin \frac{(t - 2)\pi }{6} + 0.6

7 0
3 years ago
Other questions:
  • In a random sample of egg cartons, a supermarket finds that 3 cartons in every 50 cartons contain cracked eggs. If the supermark
    10·1 answer
  • Which relation is a function?
    9·2 answers
  • The first figure is dilated to form the second figure.
    15·2 answers
  • The data set represents the total number of tickets each person purchased for a play.
    5·1 answer
  • Mention 15 examples of vegetables​
    7·1 answer
  • PLEASE HELP ME ASAP!
    8·1 answer
  • A division problem is shown below.
    14·1 answer
  • What single decimal multiplier would you use to increase by 4% followed by a 4% decrease?
    13·1 answer
  • Solve the graph fjsdjshfdkjfd
    12·1 answer
  • A 4-oz. filet of salmon contains 500 mg of potassium. The daily recommended amount of potassium is 3,500 mg. If you ate a 6-oz.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!