Answer:
b. 1 770 kWh
Explanation:
The heat needed to change the temperature of a certain amount of a substance is given by:

Here m is the mass of the susbtance, C is the specific heat of the substance and
is the temperature change

Recall that one watt hour is equivalent to 1 watt (1 W) of power sustained for 1 hour. One watt is equal to 1 J/s. So, one watt hour is equal to 3600 J and one kilowatt hour is equal to 

Answer:

Explanation:
In this case we have to use the Principle of conservation of Momentum:
<em>This principle says that in a system the total momentum is constant if no external forces act in the system. The formula is:</em>

<em>Where:</em>
Mass of the first object.
Mass of the second object.
Initial velocity of the first object.
Initial velocity of the second object.
Final velocity of the first object.
Final velocity of the second object.
In <u>this problem</u> we have:


Observation:
Is because the system has the same initial velocity.
First we have to find
,

We can rewrite it as:

Replacing with the data:

We found the final velocity of the cart, but the problem asks for the resulting change in the cart speed, this means:

Then, the resulting change in the cart speed is:

The appropriate response is false. Cathode-beam ray does not deliver pictures on the guideline of instigated emf. The cathode-ray is a high-vacuum tube in which cathode beams deliver an iridescent picture on a fluorescent screen, utilized mostly in TVs and workstations.
Under the Big Top elephant, Ella (2500 kg), is attracted to Phant, the 3,000 kg elephant. They are separated by 8
Answer:
Abby is standing (4.5^2 + 2.3^2)^1/2 from the far speaker
D2 = 5.05 m from the far speaker
The difference in distances from the speakers is
5.05 - 4.5 = .55 m (Let y be wavelength, lambda)
n y = 4.5
(n + 1) y = 5.05 for the speakers to be in phase at smallest wavelength
y = .55 m subtracting equations
f = v / y = 340 / .55 = 618 / sec should be the smallest frequency