Answer:
Explanation:
To calculate the cell potential we use the relation:
Eº cell = Eº oxidation + Eº reduction
Now in order to determine which of the species is going to be oxidized, we have to remember that the more the value of the reduction potential is negative, the greater its tendency to be oxidized is. In electrochemistry we use the values of the reductions potential in the tables for simplicity because the only thing we need to do is change the sign of the reduction potential for the oxized species .
So the species that is going to be oxidized is the Aluminium, and therefore:
Eº cell = -( -1.66 V ) + 0.340 V = 5.06 V
Equally valid is to write the equation as:
Eº cell = Eº reduction for the reduced species - Eº reduction for the oxidized species
These two expressions are equivalent, choose the one you fell more comfortable but be careful with the signs.
Grams of Phosphorus = 4.14 grams
Grams of white compound = 27.8 grams
Grams of Chlorine would be = 27.8 - 4.14 = 23.66 grams
Calculating moles which would be grams / molar mass
Molar mass of P = 30.97 grams / moles; Molar mass of Cl = 35.45 grams / moles
Moles of Phosphorus = 4.14 grams / 30.97 grams / moles = 0.1337 moles
Moles of Chlorine = 23.66 grams / 35.45 grams / moles = 0.6674 moles
Calculating the ratios by dividing with the small entity
P = 0.1337 moles / 0.1337 moles = 1
Cl = 0.6674 moles / 0.1337 moles = 5
So the empirical formula would be PCl5
Light is helpful because it allows us to see things around us.
I hope this helps :)
The temperature change is 23 °C.
<em>q = mC</em>Δ<em>T</em>
Δ<em>T</em> = <em>q</em>/(<em>mC</em>)
<em>m</em> = 355 g
∴ Δ<em>T</em> = (34 000 J)/(355 g × 4.184 J·°C⁻¹g⁻¹) = 23 °C
<em>Note</em>: The answer can have only <em>two significant figures</em> because that is all you gave for the amount of heat absorbed.
Answer:
It's ferric oxide Fe2O3
Explanation:
I don't say u must have to mark my ans as brainliest but if it has really helped u plz don't forget to thank me plz...