Answer:
The temperature should be higher than 437.9 Kelvin (or 164.75 °C) to be spontaneous
Explanation:
<u>Step 1:</u> Data given
ΔH∘=20.1 kJ/mol
ΔS is 45.9 J/K
<u>Step 2:</u> When is the reaction spontaneous
Consider temperature and pressure = constant.
The conditions for spontaneous reactions are:
ΔH <0
ΔS > 0
ΔG <0 The reaction is spontaneous at all temperatures
ΔH <0
ΔS <0
ΔG <0 The reaction is spontaneous at low temperatures ( ΔH - T*ΔS <0)
ΔH >0
ΔS >0
ΔG <0 The reaction is spontaneous at high temperatures ( ΔH - T*ΔS <0)
<u>Step 3:</u> Calculate the temperature
ΔG <0 = ΔH - T*ΔS
T*ΔS > ΔH
T > ΔH/ΔS
In this situation:
T > (20100 J)/(45.9 J/K)
T > 437.9 K
T > 164.75 °C
The temperature should be higher than 437.9 Kelvin (or 164.75 °C) to be spontaneous
Answer:
option A = S(s) + O₂(g) → SO₂ (s)
Explanation:
Chemical equation:
S(s) + O₂(g) → SO₂ (s)
when sulfur burned in the presence of oxygen it produce sulfur dioxide. The sulfur dioxide can further react with oxygen to produce sulfur trioxide and then react with water to form sulfuric acid.
Uses of sulfur dioxde:
It is used as a solvent and reagent in laboratory.
Sulfur dioxide is used to produce sulfuric acid.
It is used as a disinfectant
It is also used as a reducing agent.
It is used to preserve the dry food.
The answer to this question is B
Volume of a substance can be determined by dividing mass of the substance by its density.
That can be mathematical shown as:
Density=Mass/Volume
So, Volume=Mass/Density
Here mass of the substance given as 24.60 g
Whereas density of the substance is 2.70 g/mL
So,
Volume=Mass/Density
=24.6/2.7
=9.1 mL
So volume of the substance is 9.1 mL.
Answer:
boron has an atomic mass of 10.810 amu consists of two isotopes.