Answer:

Explanation:
Given:
- thickness of the base of the kettle,

- radius of the base of the kettle,

- temperature of the top surface of the kettle base,

- rate of heat transfer through the kettle to boil water,

- We have the latent heat vaporization of water,

- and thermal conductivity of aluminium,

<u>So, the heat rate:</u>


<u>From the Fourier's law of conduction we have:</u>


where:
area of the surface through which conduction occurs
temperature of the bottom surface

is the temperature of the bottom of the base surface of the kettle.
The correct answer is B, widespread pollution. If you look closely, you can see that the other answers are not problems at all, but benefits! :)
Answer:
density of the ball is 3.33 g/cc
Explanation:
As we know that the density is the ratio of mass and volume
here we know that
mass = 20 g
volume = 6 cubic cm
so we will have



Answer
given,
wavelength (λ)= 500 n m
thickness of film= 10⁻⁴ cm
refractive index = μ = 1.375
distance traveled is double which is equal to 2 x 10⁻⁴ cm
a) Number of wave


N = 2.91
N = 3
b) phase difference is equal to
Reflection from the first surface has a 180° (½λ) phase change.
There is no phase change for the 2nd surface reflection and there is no phase difference for the 2nd wave having traveled an exact whole number of waves.
net phase difference = 
= 270°
Answer:
1.92 J
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 200 Kg
Spring constant (K) = 10⁶ N/m
Workdone =?
Next, we shall determine the force exerted on the spring. This can be obtained as follow:
Mass (m) = 200 Kg
Acceleration due to gravity (g) = 9.8 m/s²
Force (F) =?
F = m × g
F = 200 × 9.8
F = 1960 N
Next we shall determine the extent to which the spring stretches. This can be obtained as follow:
Spring constant (K) = 10⁶ N/m
Force (F) = 1960 N
Extention (e) =?
F = Ke
1960 = 10⁶ × e
Divide both side by 10⁶
e = 1960 / 10⁶
e = 0.00196 m
Finally, we shall determine energy (Workdone) on the spring as follow:
Spring constant (K) = 10⁶ N/m
Extention (e) = 0.00196 m
Energy (E) =?
E = ½Ke²
E = ½ × 10⁶ × (0.00196)²
E = 1.92 J
Therefore, the Workdone on the spring is 1.92 J