Answer:
a. 16 s b. -1.866 kJ
Explanation:
a. Since the initial rotational speed ω₀= 3313 rev/min = 3313/60 × 2π rad/s = 346.94 rad/s. Its rotational speed becomes ω₁ = 0.75ω₀ in time t = 4 s.
We find it rotational acceleration using α = (ω₁ - ω₀)/t = (0.75ω₀ - ω₀)/t = ω₀(0.75 - 1)/t = -0.25ω₀/t = (-0.25 × 346.94 rad/s)/4 s = -21.68 rad/s².
Since the turntable stops at ω = 0, the time it takes to stop is gotten from
ω = ω₀ + αt and t = (ω - ω₀)/α = (0 - 346.94 rad/s)/-21.68 rad/s² = (-346.94/-21.68) s = 16 s.
So it takes the turntable 16 s to stop.
b. The workdone by the turntable to stop W equals its rotational kinetic energy change.
So, W = 1/2Iω² - 1/2Iω₀² = 1/2 × 0.031 kgm² × 0² - 1/2 × 0.031 kgm² × (346.94 rad/s)² = 0 - 1865.7 J = -1865.7 J = -1.8657 kJ ≅ -1.866 kJ
Answer:
The number of complete vibration or wave made in
one second is called frequency.
Answer:
Explanation:
Given that
speed u=4×10⁶ m/s
electric field E=4×10² N/c
distance b/w the plates d=2 cm
basing on the concept of the electrostatices
now we find the acceleration b/w the plates
acceleration a=qE/m=1.6×10⁻¹⁹×4×10²/9.1×10⁻³¹=0.7×10¹⁴=7×10¹³ m/s
now we find the horizantal distance travelled by electrons hit the plates
horizantal distance X=u[2y/a]^1/2
=4×10⁶[2×2×10⁻²/7×10¹³]^1/2
=9.5cm
now we find the velocity f the electron strike the plate
v²-(4×10⁶)²=2×7×10¹³×2×10⁻²
v²=16×10¹²+28×10¹¹
v²=1.88×10¹³m/s
speed after hits =>V=4.34×10⁶ m/s