Answer:
Different star constellations are visible from Earth at different seasons of the year.
Explanation:
The reason the fact that we can see different constellations in the sky during different seasons on earth is the most compelling reason we travel around the sun is because if the sun travelled around the earth, certain constellations would only be visible in certain places. You’d have to travel to see certain ones.
However, you don’t have to do that because we travel around the sun, therefore travelling around other stars too.
Normally, the water pressure inside a pump is higher than the vapor pressure: in this case, at the interface between the liquid and the vapor, molecules from the liquid escapes into vapour form. Instead, when the pressure of the water becomes lower than the vapour pressure, molecules of vapour can go inside the water forming bubbles: this phenomenon is called
cavitation.
So, cavitation occurs when the pressure of the water becomes lower than the vapour pressure. In our problem, vapour pressure at

is 1.706 kPa. Therefore, the lowest pressure that can exist in the pump without cavitation, at this temperature, is exactly this value: 1.706 kPa.
Answer:
d. decreases
Explanation:
The law of conservation of momentum tells us that the sum of momenta before the collision is equal to the sum of momenta after the collision. The bag has no momentum as it falls onto the boat because its velocity is zero in the horizontal direction. But after it hits the boat, it's momentum increases while the momentum of the system remains the same. That means a component of the system must decrease somewhere else. And that component is the velocity, not the mass, of the boat.
Answer:
<h2>9.92 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 3.2 × 3.1
We have the final answer as
<h3>9.92 N</h3>
Hope this helps you
It might be 4.0 or 2.22344 seconds as velocity speed