Answer:
maybe the rear wheel axel rusted not sure
Incomplete question as time is missing.I have assumed some times here.The complete question is here
Calculate the displacement and velocity at times of (a) 0.500 s, (b) 1.00 s, (c) 1.50 s, (d) 2.00 s, and (e) 2.50 s for a rock thrown straight down with an initial velocity of 10 m/s from the Verrazano Narrows Bridge in New York City. The roadway of this bridge is 70.0 m above the water.
Explanation:
Given data
Vi=10 m/s
S=70 m
(a) t₁=0.5 s
(b) t₂=1 s
(c) t₃=1.5 s
(d) t₄=2 s
(e) t₅=2.5 s
To find
Displacement S from t₁ to t₅
Velocity V from t₁ to t₅
Solution
According to kinematic equation of motion and given information conclude that v is given by

Also get the equation of displacement

These two formula are used to find velocity as well as displacement for time t₁ to t₅
For t₁=0.5 s

For t₂
For t₃

For t₄

For t₅

Shadows blocking part of the light from the star.
A quick warning though this only works on planets either close to the star or planets that are very large.
Also to ensure that the shadows are planets the shadows have to move or orbit around the star. IE The shadow moves
Daniddmelo says it right there, don't know why he got reported.
The potential energy (PE) is mass x height x gravity. So it would be 25 kg x 4 m x 9.8 = 980 joules. The child starts out with 980 joules of potential energy. The kinetic energy (KE) is (1/2) x mass x velocity squared. KE = (1/2) x 25 kg x 5 m/s2 = 312.5 joules. So he ends with 312.5 joules of kinetic energy. The Energy lost to friction = PE - KE. 980- 312.5 = 667.5 joules of energy lost to friction.
Please don't just copy and paste, and thank you Dan cause you practically did it I just... elaborated more? I dunno.