The ball rolled for 13.2 s
<h3>Further explanation</h3>
Speed is scalar and no direction

A bowling ball rolls 33 m, with average speed = 2.5 m/s
So elapsed time :

Answer:

this force is
times more than the gravitational force
Explanation:
Kinetic Energy of the electron is given as


now the speed of electron is given as

now we have


now the maximum force due to magnetic field is given as



Now if this force is compared by the gravitational force on the electron then it is


so this force is
times more than the gravitational force
The answer is as voltage increases current increases and therefore resistance would remain constant
The answer is: " 208 g " .
_____________________________________________
Explanation:
__________________________________________
The formula/ equation for density is:
__________________________________________
D = m / V ; That is, "mass divided by volume" ;
Density is expressed as:
__________________________________________
"mass per unit volume"; in which the "mass" is expressed in units of "g" ("grams") ; and the "unit volume" is expressed in units of:
"cm³ " or "mL";
_____________________________________________
{Note the exact equivalent: 1 cm³ = 1 mL }.
____________________________________________
→ The formula is: " D = m / V " ;
___________________________________________
in which:
"D" refers to the "density" (see above), which is: "8.9 g/cm³ " (given);
"m" refers to the "mass" , in units of "g" (grams), which is unknown; and we want to find this value;
"V" refers to the "volume", in units of "cm³ " ;
which is: "23.4 cm³ " (given);
_________________________________________________
We want to find the mass, "m" ; so we take the original equation/formula for the density:
_________________________________________________
D = m / V ;
_________________________________________________________
And we rearrange; to isolate "m" (mass) on ONE side of the equation; and then we plug in our known/given values;
to solve for "m" (mass); in units of "g" (grams) ;
___________________________________________________
Multiply each side of the equation by "V" ;
____________________________________________________
V * { D = m / V } ; to get:
____________________________________________________
V * D = m ; ↔ m = V * D ;
___________________________________________________
Now, we plug in the given values for "V" (volume) and "D" (density) ; to solve for the mass, "m" ;
______________________________________________________
m = V * D ;
m = (23.4 cm³) * (8.9 g / 1 cm³) = (23.4 * 8.9) g = 208.26 g ;
→ Round to "208 g" (3 significant figures);
____________________________________
The answer is: " 208 g " .
_____________________________________________________