The ball's gravitational potential energy is converted into kinetic energy as it falls toward the ground.
<h3>How can the height of a dropped ball be determined?</h3>
Y = 1/2 g t 2, where y is the height above the ground, g = 9.8 m/s2, and t = 1.3 s, is the formula for problems like these. Any freely falling body with an initial velocity of zero meters per second can use this formula. figuring out how much y is.
A ball drops from the top of a building and picks up speed as it descends. Its speed is increasing by 10 m/s every second. What we refer to as motion with constant acceleration is, for example, a ball falling due to gravity.
The ball's parabolic motion causes it to move at a speed of 26.3 m/s right before it strikes the ground, which is faster than its straight downhill motion, which has a speed of 17.1 m/s. Take note of the rising positive y direction in the above graphic.
To Learn more About potential energy, Refer:
brainly.com/question/14427111
#SPJ10
The horizontal and vertical components of a projectile's velocity are independent of each other.
Answer: Option C
<u>Explanation:</u>
The path of a projectile is determined by two components of motion. They are termed as horizontal and the vertical components. Since both components velocity are perpendicular to each other, so it can stated that they are independent of each other.
Even it can seen that when the horizontal components of velocity is constant, then there will be change in the vertical components of velocity leading to free fall projectile path.
And in the absence of gravity, there will be change in the horizontal components of velocity with zero vertical component of velocity. Thus, the horizontal and the vertical components of a projectile’s velocity are seemed to be independent of each other.
Answer:
Coordinates of event in system K are (x,y,z,t)=(5.103m , 3.7m , 3.7m , 1.57×10⁻⁸s)
Explanation:
To find the coordinates of event in system K ,we have to use inverse Lorentz transformation
So

for t

Coordinates of event in system K are (x,y,z,t)=(5.103m , 3.7m , 3.7m , 1.57×10⁻⁸s)
At First, there is chemical Energy( in your muscels) which is Used to Push down the spring. This Energy becomes the Energy of the spring, which increases until you stop pushing. If you Put your hand away, the Energy of the spring will become kinetic energ. This Energy is at the highest Level the Moment the book ist Leaving the spring. Afterwards, the kinetic Energy decreases while the Gravitational Potential Energy increases.
Answer:
It's either B or D, I'm not positive which it is
Explanation: