It would be C
2 kg x 1000 g/kg x 1mol/18.02 x 6.03 kj/mol = 669kj
Answer:
C.) HOCl Ka=3.5x10^-8
Explanation:
In order to a construct a buffer of pH= 7.0 we need to find the pKa values of all the acids given below
we Know that
pKa= -log(Ka)
therefore
A) pKa of HClO2 = -log(1.2 x 10^-2)
=1.9208
B) similarly PKa of HF= -log(7.2 x 1 0^-4)= 2.7644
C) pKa of HOCl= -log(3.5 x 1 0^-8)= 7.45
D) pKa of HCN = -log(4 x 1 0^-10)= 9.3979
If we consider the Henderson- Hasselbalch equation for the calculation of the pH of the buffer solution
The weak acid for making the buffer must have a pKa value near to the desired pH of the weak acid.
So, near to value, pH=7.0. , the only option is HOCl whose pKa value is 7.45.
Hence, HOCl will be chosen for buffer construction.
Answer: Magnesium Mg
Explanation:
Oxidization is the process by which a substance either gains oxygen or losses electrons.
The chemical reaction of the above is denoted by,
Mg(s) + 2HCl(aq) -----> MgCl2(aq) + H2(g)
Mg went from a 0 to a +2 state which would mean that it lost electrons.
It was therefore oxidized.
Please do react or comment if you need clarification or if the answer helped you. This can help other users as well. Thank you.
Answer:
The answer is IONIC BOND
Explanation:
Steroidogenic acute regulatory, (StAR) protein is a type of globular protein, which allows it act as an active catalyst on substrates. Because the substrates on which enzymes act usually have higher molecular weights of several hundred as compared to the enzymes, only a fraction of the enzyme's surface is in contact with the substrate. This region of contact called the <em>active site</em>, is as a result of the protein folding itself into a tertiary structure.
Once the correct substrate has bound at the active site of the enzyme, an enzyme-substrate complex is created. The substrate is usually held in the complex by combinations of electrical attraction, hydrophobic repulsion, or hydrogen bonding between and from the amino acid; the strongest of which is the ionic/electrostatic bonding due to larger amount of ionic "R" groups in the protein structure.
So whilst all these inter-molecular interactions are possible, the strongest would be <u>ionic bond.</u>