Answer:
Hydrostatic force = 41168 N
Explanation:
Complete question
A triangular plate with a base 5 ft and altitude 3 ft is submerged vertically in water so that the top is 4 ft below the surface. If the base is in the surface of water, find the force against onr side of the plate. Express the hydrostatic force against one side of the plate as an integral and evaluate it. (Recall that the weight density of water is 62.5 lb/ft3.)
Let "x" be the side length submerged in water.
Then
w(x)/base = (4+3-x)/altitude
w(x)/5 = (4+3-x)/3
w(x) = 5* (7-x)/3
Hydrostatic force = 62.5 integration of x * 4 * (10-x)/3 with limits from 4 to 7
HF = integration of 40x - 4x^2/3
HF = 20x^2 - 4x^3/9 with limit 4 to 7
HF = (20*7^2 - 4*7^(3/9))- (20*4^2 - 4*4^(3/9))
HF = 658.69 N *62.5 = 41168 N
Answer:
2.44 mV
Explanation:
This question has to be one of analog quantization size questions and as such, we use the formula
Q = (V₂ - V₁) / 2^n
Where
n = 12
V₂ = higher voltage, 5 V
V₁ = lower voltage, -5 V
Q = is the change in voltage were looking for
On applying the formula and substitutiting the values we have
Q = (5 - -5) / 2^12
Q = 10 / 4096
Q = 0.00244 V, or we say, 2.44 mV
Answer:
a. 6 seconds
b. 180 feet
Explanation:
Images attached to show working.
a. You have the position of the truck so you integrate twice. Use the formula and plug in the time t = 7 sec. Check out uniform acceleration. The time at which the truck's velocity is zero is when it stops.
b. Determine the initial speed. Plug in the time calculated in the previous step. From this we can observe that the truck comes to a stop before the end of the ramp.