1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ss7ja [257]
3 years ago
12

A 55-μF capacitor has energy ω (t) = 10 cos2 377t J and consider a positive v(t). Determine the current through the capacitor.

Engineering
1 answer:
mart [117]3 years ago
6 0

Given :

Capacitor , C = 55 μF .

Energy is given by :

\omega(t)=10cos^2 (377t)\ J .

To Find :

The current through the capacitor.

Solution :

Energy in capacitor is given by :

\omega=\dfrac{Cv^2}{2}\\\\v=\sqrt{\dfrac{2\omega}{C}}\\\\v=\sqrt{\dfrac{2\times 10cos^2 (377t)}{55\times 10^{-6}}}\\\\v=cos(337t)\sqrt{\dfrac{2\times 10}{55\times 10^{-6}}}\\\\v=603.02\ cos( 337t)

Now , current i is given by :

i=C\dfrac{dv}{dt}\\\\i=C\dfrac{d[603.02cos(337t)]}{dt}\\\\i=-55\times 10^{-6}\times 603.03\times 337\times sin(337t)\\\\i=-11.18\ sin(337t)

( differentiation of cos x is - sin x )

Therefore , the current through the capacitor is -11.18 sin ( 377t).

Hence , this is the required solution .

You might be interested in
Write multiple if statements:
lora16 [44]
Zrizorzlzfxxxgoxxxxpgxtoxxxhxuxyf
3 0
3 years ago
Which investigative process is most helpful for learning about past societies?
tatuchka [14]

Answer: think it A

Explanation: makes

6 0
3 years ago
Example – a 100 kW, 60 Hz, 1175 rpm motor is coupled to a flywheel through a gearbox • the kinetic energy of the revolving compo
rjkz [21]

Answer:

1200KJ

Explanation:

The heat dissipated in the rotor while coming down from its running speed to zero, is equal to three times its running kinetic energy.

P (rotor-loss) = 3 x K.E

P = 3 x 300 = 900 KJ

After coming to zero, the motor again goes back to running speed of 1175 rpm but in opposite direction. The KE in this case would be;

KE = 300 KJ

Since it is in opposite direction, it will also add up to rotor loss

P ( rotor loss ) = 900 + 300 = 1200 KJ

7 0
3 years ago
How to design a solar panel<br>​
artcher [175]

Answer:

#1) Find out how much power you need

#2 Calculate the amount of batteries you need.

#3 Calculate the number of solar panels needed for your location and time of year.

#4 Select a solar charge controller.

#5 Select an inverter.

#6 Balance of system

Explanation: To design solar panel, consider the following steps

1.) Find the power consumption demands

The first step in designing a solar PV system is to find out the total power and energy consumption of all loads that need to be supplied by the solar PV system as follows:

Calculate total Watt-hours per day for each appliance used.

 Add the Watt-hours needed for all appliances together to get the total Watt-hours per day which must be delivered to the appliances.

Calculate total Watt-hours per day needed from the PV modules.

Multiply the total appliances Watt-hours per day times 1.3 (the energy lost in the system) to get the total Watt-hours per day which must be provided by the panels.

2. Size the PV modules

Different size of PV modules will produce different amount of power. To find out the sizing of PV module, the total peak watt produced needs. The peak watt (Wp) produced depends on size of the PV module and climate of site location. We have to consider panel generation factor which is different in each site location. For Thailand, the panel generation factor is 3.43. To determine the sizing of PV modules, calculate as follows:

2.1 Calculate the total Watt-peak rating needed for PV modules

Divide the total Watt-hours per day needed from the PV modules (from item 1.2) by 3.43 to get the total Watt-peak rating needed for the PV panels needed to operate the appliances.

Calculate the number of PV panels for the system

Divide the answer obtained in item 2.1 by the rated output Watt-peak of the PV modules available to you. Increase any fractional part of result to the next highest full number and that will be the 

number of PV modules required.

Result of the calculation is the minimum number of PV panels. If more PV modules are installed, the system will perform better and battery life will be improved. If fewer PV modules are used, the system may not work at all during cloudy periods and battery life will be shortened.

3. Inverter sizing

An inverter is used in the system where AC power output is needed. The input rating of the inverter should never be lower than the total watt of appliances. The inverter must have the same nominal voltage as your battery.

For stand-alone systems, the inverter must be large enough to handle the total amount of Watts you will be using at one time. The inverter size should be 25-30% bigger than total Watts of appliances. In case of appliance type is motor or compressor then inverter size should be minimum 3 times the capacity of those appliances and must be added to the inverter capacity to handle surge current during starting.

For grid tie systems or grid connected systems, the input rating of the inverter should be same as PV array rating to allow for safe and efficient operation.

4. Battery sizing

The battery type recommended for using in solar PV system is deep cycle battery. Deep cycle battery is specifically designed for to be discharged to low energy level and rapid recharged or cycle charged and discharged day after day for years. The battery should be large enough to store sufficient energy to operate the appliances at night and cloudy days. To find out the size of battery, calculate as follows:

     4.1 Calculate total Watt-hours per day used by appliances.

     4.2 Divide the total Watt-hours per day used by 0.85 for battery loss.

     4.3 Divide the answer obtained in item 4.2 by 0.6 for depth of discharge.

     4.4 Divide the answer obtained in item 4.3 by the nominal battery voltage.

     4.5 Multiply the answer obtained in item 4.4 with days of autonomy (the number of days that you need the system to operate when there is no power produced by PV panels) to get the required Ampere-hour capacity of deep-cycle battery.

Battery Capacity (Ah) = Total Watt-hours per day used by appliancesx Days of autonomy

(0.85 x 0.6 x nominal battery voltage)

5. Solar charge controller sizing

The solar charge controller is typically rated against Amperage and Voltage capacities. Select the solar charge controller to match the voltage of PV array and batteries and then identify which type of solar charge controller is right for your application. Make sure that solar charge controller has enough capacity to handle the current from PV array.

For the series charge controller type, the sizing of controller depends on the total PV input current which is delivered to the controller and also depends on PV panel configuration (series or parallel configuration).

According to standard practice, the sizing of solar charge controller is to take the short circuit current (Isc) of the PV array, and multiply it by 1.3

Solar charge controller rating = Total short circuit current of PV array x 1.3

5 0
3 years ago
Sarah needs to create an architectural drawing for a museum building with an inclined surface. Which presentation view will be t
prohojiy [21]

Answer: auxiliary

Explanation: got it right

7 0
2 years ago
Other questions:
  • The difference between ideal voltage source and the ideal current source​
    7·2 answers
  • Anyone know sebastian from bb
    8·1 answer
  • State 2 reasons on why blind spot checks are important
    5·1 answer
  • 14. Tires are rotated to
    12·2 answers
  • Two loads connected in parallel draw a total of 2.4 kW at 0.8 pf lagging from a 120-V rms, 60-Hz line. One load absorbs 1.5 kW a
    5·1 answer
  • Explain why veracity, value, and visualization can also be said to apply to relational databases as well as Big Data.
    6·1 answer
  • Ppman2000 Aye Get On Treasure Quest and Join Masons Kingdom :D
    10·1 answer
  • What is it that makes a battery rechargeable? How is it different from a regular battery?
    14·2 answers
  • There is a black-box system (i.e we do not know the transfer function of the system). When we fed a step input into the system,
    9·1 answer
  • At a certain location, wind is blowing steadily at 7 m/s. Determine the mechanical energy of air per unit mass and the power gen
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!