1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ss7ja [257]
2 years ago
12

A 55-μF capacitor has energy ω (t) = 10 cos2 377t J and consider a positive v(t). Determine the current through the capacitor.

Engineering
1 answer:
mart [117]2 years ago
6 0

Given :

Capacitor , C = 55 μF .

Energy is given by :

\omega(t)=10cos^2 (377t)\ J .

To Find :

The current through the capacitor.

Solution :

Energy in capacitor is given by :

\omega=\dfrac{Cv^2}{2}\\\\v=\sqrt{\dfrac{2\omega}{C}}\\\\v=\sqrt{\dfrac{2\times 10cos^2 (377t)}{55\times 10^{-6}}}\\\\v=cos(337t)\sqrt{\dfrac{2\times 10}{55\times 10^{-6}}}\\\\v=603.02\ cos( 337t)

Now , current i is given by :

i=C\dfrac{dv}{dt}\\\\i=C\dfrac{d[603.02cos(337t)]}{dt}\\\\i=-55\times 10^{-6}\times 603.03\times 337\times sin(337t)\\\\i=-11.18\ sin(337t)

( differentiation of cos x is - sin x )

Therefore , the current through the capacitor is -11.18 sin ( 377t).

Hence , this is the required solution .

You might be interested in
g A thin-walled pressure vessel 6-cm thick originally contained a small semicircular flaw (radius 0.50-cm) located at the inner
galben [10]

This question is not complete, the complete question is;

A thin-walled pressure vessel 6-cm thick originally contained a small semicircular flaw (radius 0.50-cm) located at the inner surface and oriented normal to the hoop stress direction. Repeated pressure cycling enabled the crack to grow larger. If the fracture toughness of the material is 88 Mpam^\frac{1}{2} , the yield strength equal to 1250 MPa, and the hoop stress equal to 300 MPa, would the vessel leak before it ruptured

Answer:

length of crack is 5.585 cm

we will observe that, the length of crack (5.585 cm) is less than the vessel thickness (6 cm) Hence, vessel will not leak before it ruptures

Explanation:

Given the data in the question;

vessel thickness = 6 cm

fracture toughness k = 88 Mpam^\frac{1}{2}

yield strength = 1250 MPa

hoop stress equal = 300 MPa

we know that, the relation between fracture toughness and crack length is expressed as;

k = (1.1)(2/π)(r√(πa))  

where k is the fracture toughness, r is hoop stress and a is length of crack

so we rearrange to find  length of crack

a = 1/π[( k / 1.1(r)(2/π)]²

a = 1/π[( kπ / 1.1(r)(2)]²

so we substitute  

a = 1/π [( 88π / 1.1(300)(2/π)]²    

a = 1/π[ 0.1754596 ]

a = 0.05585 m

a = 0.05585 × 100 cm

a = 5.585 cm  

so, length of crack is 5.585 cm

we will observe that, the length of crack (5.585 cm) is less than the vessel thickness (6 cm) Hence, vessel will not leak before it ruptures

8 0
2 years ago
Technician A says that the most commonly used combustion chamber types include hemispherical, and wedge. Technician B says that
Inessa05 [86]

Answer:

Technician A and Technician B both are correct.

Explanation:

Technician A accurately notes that perhaps the forms of combustion process most widely used are hemispherical and cross.

Technician B also correctly notes that in several cylinder heads, cooling system and greases gaps and pathways are found.

6 0
3 years ago
A 1000-MVA, 20-kV, 60-Hz, three-phase generator is connected through a 1000-MVA, 20-kV, Dy345-kV, Y transformer to a 345-kV circ
aniked [119]

Answer:

(a) the subtransient current through the breaker in per-unit and in kA rms =   71316.39kA

(b) the rms asymmetrical fault current the breaker interrupts, assuming maximum dc offset. = 152KA

Explanation:

check the attached files for explanation

7 0
2 years ago
An engineering firm just lost one of their larger customers. The firm president says that the solution to this problem is to fir
Shkiper50 [21]

Answer:

The engineers disagreed because their jobs were on the line

The ethical factors are:

The reason for the customer dumping the business is yet to be figured out

The need to keep cost to the lowest ebb in order to keep maintain profitability at the expense of employees' welfare

The are several ways of growing customer base which  are yet to be exploited.

Explanation:

The engineers disagree because there is no direct connection between the company's loss of the customer and their proposed layoff of the engineers,at least no one strong evidence has been given by the president.

The ethical factors inherent in this case are as follows:

The reason for the customer dumping the business is yet to be figure out

The need to keep cost to the lowest ebb in order to keep maintain profitability.

The are several ways of growing customer base which  are yet to be exploited.

There is  a need for a fact-finding exercise to establish the main motive behind losing such customer,without which the company can run into more troubles in future,otherwise the company would keep firing its good hands each time a customer dumps it.

Also,the president had resulted into such decision in order to maintain company's margins,where then lies ethics of welfare economics?Welfare economics is about looking beyond margins and looking at issues from a wider perspective of fulfilling the needs of employees in order for them to put in their best performance,at least by granting them job safety.

The company could have also grown business by investing in new technology that sets it apart from competitors instead of just jumping into the conclusions of sacking employees in a business where the company's strength lies in quality of engineers that it has.

7 0
2 years ago
100 kg of R-134a at 200 kPa are contained in a piston–cylinder device whose volume is 12.322 m3. The piston is now moved until t
LekaFEV [45]

Answer:

T=151 K, U=-1.848*10^6J

Explanation:

The given process occurs when the pressure is constant. Given gas follows the Ideal Gas Law:

 pV=nRT

For the given scenario, we operate with the amount of the gas- n- calculated in moles. To find n, we use molar mass: M=102 g/mol.  

Using the given mass m, molar mass M, we can get the following equation:  

 pV=mRT/M

To calculate change in the internal energy, we need to know initial and final temperatures. We can calculate both temperatures as:

T=pVM/(Rm); so initial T=302.61K and final T=151.289K

 

Now we can calculate change of U:

U=3/2 mRT/M using T- difference in temperatures

 U=-1.848*10^6 J

Note, that the energy was taken away from the system.  

5 0
3 years ago
Other questions:
  • Estudio de caso Teorema de Bayes. Las historias de casos clínicos indican que diversas enfermedades producen sistemas similares.
    14·1 answer
  • A solid titanium alloy [G 114 GPa] shaft that is 720 mm long will be subjected to a pure torque of T 155 N m. Determine the mini
    5·1 answer
  • Link AB is to be made of a steel for which the ultimate normal stress is 65 ksi. Determine the cross-sectional area of AB for wh
    14·1 answer
  • Given a series of numbers as input, add them up until the input is 10 and print the total. Do not add the final 10. For example,
    7·1 answer
  • The gas-turbine cycle of a combined gas–steam power plant has a pressure ratio of 8. Air enters the compressor at 290 K and the
    15·1 answer
  • Write a statement that increases numPeople by 5. Ex: If numPeople is initially 10, the output is: There are 15 people.
    11·1 answer
  • A heat engine operates between a source at 477°C and a sink at 27°C. If heat is supplied to the heat engine at a steady rate of
    14·1 answer
  • Technician A says that in a worm gear steering system, most excessive steering free play is usually found in the gearbox. Techni
    13·1 answer
  • A 250 kilo ohms and a 750 kilo ohms resistor are connected in series across a 75-volt source. Determine the error in measuring t
    10·1 answer
  • Determine the slopes and deflections at points B and C for the beam shown below by the moment-area method. E=constant=70Gpa I=50
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!