I put
People who pursue a career in the creative imaging fields have qualities like a good imagination, creativity, open minds, good with ideas, and handling situations. If you enter that field, you need imagination to create things and an open mind to be open to all creations. You need good ideas to make good thing that will work.
please don't plagiarise tho, re-word it.
Answer:
0.0297M^3/s
W=68.48kW
Explanation:
Hello! To solve this problem, we must first find all the thermodynamic properties at the input (state 1) and the compressor output (state 2), using the thermodynamic tables
Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)
through prior knowledge of two other properties such as pressure and temperature.
state 1
X=quality=1
T=-26C
density 1=α1=5.27kg/m^3
entalpy1=h1=234.7KJ/kg
state 2
T2=70
P2=8bar=800kPa
density 2=α2=31.91kg/m^3
entalpy2=h2=306.9KJ/kg
Now to find the flow at the outlet of the compressor, we remember the continuity equation that states that the mass flow is equal to the input and output.
m1=m2
(Q1)(α1)=(Q2)(α2)

the volumetric flow rate at the exit is 0.0297M^3/s
To find the power of the compressor we use the first law of thermodynamics that says that the energy that enters must be equal to the energy that comes out, in this order of ideas we have the following equation
W=m(h2-h1)
m=Qα
W=(0.18)(5.27)(306.9-234.7)
W=68.48kW
the compressor power is 68.48kW
The answer to this problem is the results of the point A
Explanation:
Step1
Absolute pressure is the pressure above zero level of the pressure. Absolute pressure is considering atmospheric pressure in it. Absolute pressure is always positive. There is no negative absolute pressure.
The expression for absolute pressure is given as follows:

Here,
is absolute pressure,
is gauge pressure and
is atmospheric pressure.
Step2
Gauge pressure is the pressure that measure above atmospheric pressure. It is not considering atmospheric pressure. It can be negative called vacuum or negative gauge pressure. Gauge pressure used to simplify the pressure equation for fluid analysis.
Answer:
D
Explanation: She hopes to be able to make this, however she hasn't yet...therefore she is thinking of a concept and it's development