Answer:
0.252 mol
Explanation:
<em>Given the following reaction: </em>
<em>Cu + 2 AgNO₃ → 2 Ag + Cu(NO₃)₂</em>
<em>How many moles of Ag will be produced from 16.0 g Cu, assuming AgNO3 is available in excess.</em>
First, we write the balanced equation.
Cu + 2 AgNO₃ → 2 Ag + Cu(NO₃)₂
We can establish the following relations.
- The molar mass of Cu is 63.55 g/mol.
- The molar ratio of Cu to Ag is 1:1.
The moles of Ag produced from 16.0 g of Cu are:

Answer:
1. light is made up of energy
2. light travels in a straight line
3. the speed of light is exactly 299 792 km per second
4. this is the speed when light is traveling in a vacuum and not obstructed by the atmosphere 5. traveling at the speed of light you could go around the earth seven and a half times in a second
6. light can move super fast super slow and not at all
7. we can use light to weigh Stars
8. we can use light as tweezers
9. bubbles can turn sound into light
10. lasers can make things cold
Answer:
92.72 kJ
Explanation:
2 N₂ (g) + O₂ (g) —-> 2 N₂O
According to question , one mole of N₂O requires 163.2 kJ of heat
Molecular weight of N₂O = 44 gm
25 g N₂O = 25 / 44 mole
25 / 44 mole will require 163.2 x 25 / 44 kJ
= 92.72 kJ
Answer:
The chemical equation needs to be balanced so that it follows the law of conservation of mass. A balanced chemical equation occurs when the number of the different atoms of elements in the reactants side is equal to that of the products side.