Answer:
(a) 0.047 g (b) 0.0016 oz (c) 0.0001 lb
Explanation:
The given mass of the sodium in the slice = 47 mg
(a) Mass has to be calculated in grams
The conversion of mg to g is shown below as:
1 mg = 10⁻³ g
So,
<u>Mass of sodium = 47 × 10⁻³ g = 0.047 g</u>
(b) Mass has to be calculated in ounces
The conversion of ounces to g is shown below as:
453.6 g = 16 oz
Or,
1 g = 16 / 453.6 oz
So,
<u>Mass of sodium = (0.047 × 16) / 453.6 oz = 0.0016 oz</u>
(c) Mass has to be calculated in pounds
The conversion of pounds to g is shown below as:
1 lb = 453.6 g
Or,
1 g = 1/ 453.6 lb
So,
<u>Mass of sodium = (0.047 × 1) / 453.6 oz = 0.0001 lb</u>
C a giraffe that eats the leaves off trees
This is a simple chemical change due to what it produces and how it is added together. Hope this helps.
Density = 1.01 g/cm^3 or 1.01 kg/dm^3 or 1010 kg/m^3
Density = mass/volume = 1010 g/1000 cm^3 = 1.01 g/cm^3 = 1.01 kg/dm^3
= 1010 kg/m^3
The specific heat capacity of the metal given the data from the question is 0.66 J/gºC
<h3>Data obtained from the question</h3>
- Mass of metal (M) = 76 g
- Temperature of metal (T) = 96 °C
- Mass of water (Mᵥᵥ) = 120 g
- Temperature of water (Tᵥᵥ) = 24.5 °C
- Equilibrium temperature (Tₑ) = 31 °C
- Specific heat capacity of the water (Cᵥᵥ) = 4.184 J/gºC
- Specific heat capacity of metal (C) =?
<h3>How to determine the specific heat capacity of the metal</h3>
The specific heat capacity of the sample of the metal can be obtained as follow:
Heat loss = Heat gain
MC(M –Tₑ) = MᵥᵥCᵥᵥ(Tₑ – Tᵥᵥ)
76 × C × (96 – 31) = 120 × 4.184 × (31 – 24.5)
C × 4940 = 3263.52
Divide both side by 4940
C = 3263.52 / 4940
C = 0.66 J/gºC
Learn more about heat transfer:
brainly.com/question/6363778
#SPJ1