Answer:
3 Cu²⁺(aq) + 2 PO₄³⁻(aq) ⇒ Cu₃(PO₄)₂(s)
Explanation:
Let's consider the molecular equation between aqueous copper(II) chloride and aqueous sodium phosphate.
3 CuCl₂(aq) + 2 Na₃PO₄(aq) ⇒ 6 NaCl(aq) + Cu₃(PO₄)₂(s)
The complete ionic equation includes all the ions and insoluble species.
3 Cu²⁺(aq) + 6 Cl⁻(aq) + 6 Na⁺(aq) + 2 PO₄³⁻(aq) ⇒ 6 Na⁺(aq) + 6 Cl⁻(aq) + Cu₃(PO₄)₂(s)
The net ionic equation includes only the ions that participate in the reaction (not spectator ions) and insoluble species.
3 Cu²⁺(aq) + 2 PO₄³⁻(aq) ⇒ Cu₃(PO₄)₂(s)
the answer is "in cold water"
The Answer for this question is Meter
Answer:
#1
The temperature that this happens is called the freezing point and is the same temperature as the melting point. As more energy is put into the system, the water heats up, the molecules begin moving faster and faster until there is finally enough energy in the system to totally overcome the attractive forces.
Explanation:
#2
Heating a liquid increases the speed of the molecules. An increase in the speed of the molecules competes with the attraction between molecules and causes molecules to move a little further apart. ... A decrease in the speed of the molecules allows the attractions between molecules to bring them a little closer together.
It pushes the positive ions together, the positive ions repel each other, causing the crystal to shatter