B, Light, mechanical. The solar panel takes in light energy (from the sun), and in exchange spits out mechanical energy (turns the wheels/powers the battery).
The correct option is PROVIDE ELECTRICAL ENERGY.
The marked cell in the given electric circuit is the battery and the function of the battery in electric cells is to provide electrical energy that will drive the electrical current in the electric circuit. A battery in an electric circuit is thus a source of energy for the circuit.
use the formula: v^2=(3kT)/m
Where:
<em>v is the velocity of a molecule</em>
<em>k is the Boltzmann constant (1.38064852e-23 J/K)</em>
<em>T is the temperature of the molecule in the air</em>
<em>m is the mass of the molecule</em>
For an H2 molecule at 20.0°C (293 K):
v^2 = 3 × 1.38e-23 J/K × 293 K / (2.00 u × 1.66e-27 kg/u)
v^2 = 3.65e+6 m^2/s^2
v = 1.91e+3 m/s
For an O2 molecule at same temp.:
v^2 = 3 × 1.38e-23 J/K × 293 K / (32.00 u × 1.66e-27 kg/u)
v^2 = 2.28e+5 m^2/s^2
v = 478 m/s
Therefore, the ratio of H2:O2 velocities is:
1.91e+3 / 478 = 4.00
Answer:
12 m
Explanation:
The object is in uniformly accelerated motion, so the distance covered can be found using the following suvat equation:

where
s is the distance
u is the initial velocity
t is the time
a is the acceleration
For this problem,

and
u = 0, since we are considering the first second of motion
So, substituting t = 1 s, we find
