Here i state the conservation of energy rule and use that to justify my answer. I showed how to manipulate percentages to get the final answer of 11000J (2sf). Hope I'm right xx
I think you're saying that once you start pushing on the cars, you want to be able to stop each one in the same time.
This is sneaky. At first, I thought it must be both 'c' and 'd'. But it's not
kinetic energy, for reasons I'm not ambitious enough to go into.
(And besides, there's no great honor awarded around here for explaining
why any given choice is NOT the answer.)
The answer is momentum.
Momentum is (mass x speed). Change in momentum is (force x time).
No matter the weight (mass) or speed of the car, the one with the greater
momentum is always the one that will require the greater (force x time)
to stop it. If the time is the same for any car, then more momentum
will always require more force.
Answer:
Part a)

Part b)

Explanation:
Diameter of the circle = 24 ft
Diameter = 731.52 cm = 7.3152 m
now the horse complete 144 trips in one hour
so time to complete one trip is given as


now the speed of the horse is given as



Part a)
Now we know that the power is defined as rate of work done
it is given as




Part b)
Work done to climb up to 3 m height is given by

now we have




now we know that 1 HP = 746 Watt
so we have

Explanation:
Given that,
The dimensions of the largest building in the world is 632 m long, 710 yards wide, and 112 ft high. It basically forms a cuboid. The volume of a cuboidal shape is given by :
Since,
1 meter = 3.28084 feet
632 m = 2073.49 feet
1 yard= 3 feet
710 yards = 2130 feet
V = lbh



Also,


Hence, this is the required solution.