Answer:
Aristotle
Explanation:
Aristotelian theory of the Universe
For two millennia, the philosophical tradition considered that the universe was eternal and did not change. The wise Aristotle said so, with total clarity and his ideas dominated Western thought for more than two thousand years.
This distinguished philosopher believed that the stars are made of an imperishable matter and that the landscapes of the sky are immutable.
From the time of Aristotle until the beginning of the twentieth century, the idea that the universe was static, that the cosmos had been eternally equal, was admitted.
In those years, the origin of the universe was not really considered in a scientific way, since it was based on the basis that the gods had created everything that exists, at the time they wanted it, according to their omnimous power.
So that all the efforts of the wise men of the time focused on discovering the existing organization in the universe created by the gods.
According to Aristotle and the thinkers of the fourth century B.C. what is below the Moon is a changing world, what is beyond the Moon is an immutable world.
These values when compared seem to be the same. They are equal. If we convert them to the same units, they results to the value which is:
51.5 Hectograms = 5100 Grams
51,500 Decigrams = 5100 Grams
Hope this answers the question. Have a nice day.
Answer:
equation of motion for the mass is x(t) = e^αt ( C1 cos √{α² - ω²} t + C2 sin √{α² - ω²} t )
Explanation:
Given data
mass = 3 slugs = 3 * 32.14 = 96.52 lbs
constant k = 9 lbs/ft
Beta = 6lbs * s/ft
mass is pulled = 1 ft below
to find out
equation of motion for the mass
solution
we know that The mass is pulled 1 ft below so
we will apply here differential equation of free motion i.e
dx²/dt² + 2 α dx/dt + ω² x =0 ........................1
here 2 α = Beta / mass
so 2 α = 6 / 96.52
α = 0.031
α² = 0.000961 ...............2
and
ω² = k/mass
ω² = 9 /96.52
ω² = 0.093 ..................3
we can say that from equation 2 and 3 that α² - ω² = -0.092239
this is less than zero
so differential equation is
x(t) = e^αt ( C1 cos √{α² - ω²} t + C2 sin √{α² - ω²} t )
equation of motion for the mass is x(t) = e^αt ( C1 cos √{α² - ω²} t + C2 sin √{α² - ω²} t )
Answer:
Tornadoes form in unusually violent thunderstorms when there is sufficient (1) instability and (2) wind shear present in the lower atmosphere. Instability refers to unusually warm and humid conditions in the lower atmosphere, and possibly cooler than usual conditions in the upper atmosphere.
Explanation:
please don't delete my answer brainly i beg you