Answer: The electric repulsion between the two protons is stronger than the gravitational attraction.
Explanation: Please see the attachments below
Answer:

Explanation:
From the law of conservation of energy
Energy lost by the spring, W=Kinetic energy gained, KE+Potential energy gained, PE+Work done by friction, Fr



The required distance from A to B is 
Answer:
0.2687 approximately 0.27
Explanation:
Diameter = 0.320
Speed = 40.0 rev/min
We are required to find coefficient of static friction between friction and button
The radius can be calculated as
0.320/2
= 0.160m
Then we have the rotational speed w = 40rev/min x 2pi/60
= 4.19 rad/s
umg = mrw²
u = mrw²/mg
u = rw²/g -------(1)
g = 9.8
When we put values into equation 1
0.150m x 4.19² / 9.8
= 0.150m x 17.5561 /9.8
= 0.2689
This is approximately 0.27
You could answer this right away IF you knew the length of each wave, right ?
Well, Wavelength = (speed) / (frequency).
Speed = 3 x 10⁸ m/s (the speed of light)
and
Frequency = 90.9 x 10⁶ Hertz.
So the length of each wave is 3 x 10⁸ / 90.9 x 10⁶ meters.
To answer the question, see how many pieces you have to cut
that 1.5 km into, in order for each piece to be 1 wavelength.
It'll be
(1,500 meters) divided by (3 x 10⁸ meters/sec) / (90.9 x 10⁶ Hz)
To divide by a fraction, flip the fraction and then multiply:
(1500 meters) times (90.9 x 10⁶ Hz)/(3 x 10⁸ meters/sec)
= 454.5
Answer:
<em>"the magnitude of the magnetic field at a point of distance a around a wire, carrying a constant current I, is inversely proportional to the distance a of the wire from that point"</em>
Explanation:
The magnitude of the magnetic field from a long straight wire (A approximately a finite length of wire at least for close points around the wire.) decreases with distance from the wire. It does not follow the inverse square rule as is the electric field from a point charge. We can then say that<em> "the magnitude of the magnetic field at a point of distance a around a wire, carrying a constant current I, is inversely proportional to the distance a of the wire from that point"</em>
From the Biot-Savart rule,
B = μI/2πR
where B is the magnitude of the magnetic field
I is the current through the wire
μ is the permeability of free space or vacuum
R is the distance between the point and the wire, in this case is = a