Answer:
N = 177843 sheets
Explanation:
We are given;
Mass;m = 0.0035 kg
Pressure; p = 101325 pa = 101325 N/m²
L = 0.279m
W = 0.216m
The weight of N sheets is N(mg)
Where;
m is the mass of one sheet
N is number of sheets
g is the acceleration due to gravity.
The pressure equals weight divided by the area on which the weight presses:
Thus,
p= F/A = Nmg/(L•W)
Therefore, making N the subject;
N = pLW/(mg)
N = 101325 x 0.279 x 0.216/ (0.0035 x 9.81)
N = 177843
Answer:
a) their potential energy increases.
Explanation:
Ohm's Law is
R= V/I
Where R= Resistance
V= potential difference or potential energy
I= current or conduction electron flow rate
Clearly R and V are directly proportional i-e Potential energy increases with resistance.
Answer:
a) -2.038 m/s²
b) 40.33 mph
c) 312.5 m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration

Acceleration of the boat is -2.083 m/s² if the boat will stop at 150 m.

Speed of the boat by when it will hit the dock is 18.03 m/s
Converting to mph



Speed of the boat by when it will hit the dock is 40.33 mph

The distance at which the boat will have to start decelerating is 312.5 m
Answer: Kinetic Molecular Theory claims that gas particles are in continuous motion and completely demonstrate elastic collisions. Kinetic Molecular Theory can be used to describe the rules of both Charles and Boyle. A series of gas particles only has an average kinetic energy that is directly proportional to absolute temperature.
<h2>
Answer: 502.08 J</h2>
Explanation:
The heat (thermal energy) needed in to raise the temperature in a process can be found using the following equation:
(1)
Where:
is the heat
is the mass of the element (<u>water</u> in this case)
is the specific heat capacity of the material. In the case of water is
is the variation in temperature <u>(which is increased in this case)</u>
Knowing this, let's rewrite (1) with these values:
(2)
Finally: