Answer:
63. 55 amu
Explanation:
Copper is known to exist in two different isotopes which are Cu-63 and Cu-65.
Cu-63 has an atomic mass of 62.93 amu and it has an abundance of 69.15%.
Similarly,
Cu-65 has an atomic mass of 64.93 amu and it has an abundance of 30.85%
Therefore, using the weighted average mass method, the atomic mass of copper is:
Atomic mass of copper = (0.6915*62.93) amu + (0.3085*64.93) amu = 43.52 amu + 20.03 amu = 63.55 amu
Thus, the atomic mass of copper (express in two decimal places) is 63.55 amu
Answer:
36s^5
Explanation:
We have;
M2X3 (s)------> 2M^3+(aq) + 3X^2-(aq)
If [M^3+(aq)] = [X^2-(aq)] = s
We then have;
Ksp = (2s)^2 * (3s)^3
Ksp = 4s^2 * 9s^3
Ksp = 36s^5
Note that Ksp is known as the solubility product. It is an equilibrum equation that shows the solubility of a solute in water.
<u>Answer:</u> The correct answer is Option D.
<u>Explanation:</u>
Atomic mass of an atom is defined as the sum of number of neutrons and number of protons that are present in an atom. It is represented as 'A'.
Atomic number = Number of protons + Number of neutrons
We are given:
Number of protons = 6
Number of neutrons = 6
Number of electrons = 6
Atomic mass = 6 + 6 = 12
Hence, the correct answer is Option D.
Answer:

group 16 period 2 of the periodic table
note: that is not the electronic configuration, that is the Bohr model.