v = initial velocity of launch of the stone = 12 m/s
θ = angle of the velocity from the horizontal = 30
Consider the motion of the stone along the vertical direction taking upward direction as positive and down direction as negative.
v₀ = initial velocity along vertical direction = v Sinθ = 12 Sin30 = 6 m/s
a = acceleration of the stone = - 9.8 m/s²
t = time of travel = 4.8 s
Y = vertical displacement of stone = vertical height of the cliff = ?
using the kinematics equation
Y = v₀ t + (0.5) a t²
inserting the values
Y = 6 (4.8) + (0.5) (- 9.8) (4.8)²
Y = - 84.1 m
hence the height of the cliff comes out to be 84.1 m
Answer:
required distance is 233.35 m
Explanation:
Given the data in the question;
Sound intensity
= 1.62 × 10⁻⁶ W/m²
distance r = 165 m
at what distance from the explosion is the sound intensity half this value?
we know that;
Sound intensity
is proportional to 1/(distance)²
i.e
∝ 1/r²
Now, let r² be the distance where sound intensity is half, i.e
₂ =
₁/2
Hence,
₂/
₁ = r₁²/r₂²
1/2 = (165)²/ r₂²
r₂² = 2 × (165)²
r₂² = 2 × 27225
r₂² = 54450
r₂ = √54450
r₂ = 233.35 m
Therefore, required distance is 233.35 m
The other person who answered this is wrong btw
Answer:
During stage 3 - late expanding (of demogrpahic transition model)
Explanation:
During stage 3, birth rate begins to decline as infant mortality is lower and women have more access to education, family planning, and contraceptives. Children are not needed as "free labor" as they might have been in earlier stages.