1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harlamova29_29 [7]
2 years ago
14

(a) Define moment of a force (1mk)

Physics
1 answer:
faltersainse [42]2 years ago
3 0

Nf mass 1508 of pivoted freely at the 0cm

You might be interested in
You drop a small ball, and then a second small ball. When you drop the second ball, the distance between them is 3 cm. What stat
Alja [10]

Answer:

c) The distance between the balls increases.

Explanation:

If you drop the balls at the same time, regardless of their masses they accelerate equally, since they will be in free fall.

However, if you drop one of the balls earlier, then that ball will gain velocity, whereas the second ball has zero initial velocity. At the time the second ball is dropped, both balls have the same acceleration but different initial velocities.

According to the below kinematics equation:

x = v_0t + \frac{1}{2}at^2

The initial velocity of the first ball will make the difference, and the first ball will travel a greater distance than the second ball. Hence, their distance increases.

3 0
3 years ago
Janelle is exploring the relationship between the brightness of a light bulb and the current that powers it. When applying these
Vlada [557]

Answer:B

Explanation:

Y is the brightest bulb

7 0
3 years ago
If a planet has the same mass as the earth, but has twice the radius, how does the surface gravity, g, compare to g on the surfa
shepuryov [24]

Answer:

The surface gravity g of the planet is 1/4 of the surface gravity on earth.

Explanation:

Surface gravity is given by the following formula:

g=G\frac{m}{r^{2}}

So the gravity of both the earth and the planet is written in terms of their own radius, so we get:

g_{E}=G\frac{m}{r_{E}^{2}}

g_{P}=G\frac{m}{r_{P}^{2}}

The problem tells us the radius of the planet is twice that of the radius on earth, so:

r_{P}=2r_{E}

If we substituted that into the gravity of the planet equation we would end up with the following formula:

g_{P}=G\frac{m}{(2r_{E})^{2}}

Which yields:

g_{P}=G\frac{m}{4r_{E}^{2}}

So we can now compare the two gravities:

\frac{g_{P}}{g_{E}}=\frac{G\frac{m}{4r_{E}^{2}}}{G\frac{m}{r_{E}^{2}}}

When simplifying the ratio we end up with:

\frac{g_{P}}{g_{E}}=\frac{1}{4}

So the gravity acceleration on the surface of the planet is 1/4 of that on the surface of Earth.

3 0
3 years ago
A small boat coasts at constant speed under a bridge. A heavy sack of sand is dropped from the bridge onto the boat. The speed o
Tju [1.3M]

Answer:

d. decreases

Explanation:

The law of conservation of momentum tells us that the sum of momenta before the collision is equal to the sum of momenta after the collision. The bag has no momentum as it falls onto the boat because its velocity is zero in the horizontal direction. But after it hits the boat, it's momentum increases while the momentum of the system remains the same. That means a component of the system must decrease somewhere else. And that component is the velocity, not the mass, of the boat.

7 0
3 years ago
Three masses (3 kg, 5 kg, and 7 kg) are located in the xy-plane at the origin, (2.3 m, 0), and (0, 1.5 m), respectively.
Artist 52 [7]

Answer:

a) C.M =(\bar x, \bar y)=(0.767,0.7)m

b) (x_4,y_4)=(-1.917,-1.75)m

Explanation:

The center of mass "represent the unique point in an object or system which can be used to describe the system's response to external forces and torques"

The center of mass on a two dimensional plane is defined with the following formulas:

\bar x =\frac{\sum_{i=1}^N m_i x_i}{M}

\bar y =\frac{\sum_{i=1}^N m_i y_i}{M}

Where M represent the sum of all the masses on the system.

And the center of mass C.M =(\bar x, \bar y)

Part a

m_1= 3 kg, m_2=5kg,m_3=7kg represent the masses.

(x_1,y_1)=(0,0),(x_2,y_2)=(2.3,0),(x_3,y_3)=(0,1.5) represent the coordinates for the masses with the units on meters.

So we have everything in order to find the center of mass, if we begin with the x coordinate we have:

\bar x =\frac{(3kg*0m)+(5kg*2.3m)+(7kg*0m)}{3kg+5kg+7kg}=0.767m

\bar y =\frac{(3kg*0m)+(5kg*0m)+(7kg*1.5m)}{3kg+5kg+7kg}=0.7m

C.M =(\bar x, \bar y)=(0.767,0.7)m

Part b

For this case we have an additional mass m_4=6kg and we know that the resulting new center of mass it at the origin C.M =(\bar x, \bar y)=(0,0)m and we want to find the location for this new particle. Let the coordinates for this new particle given by (a,b)

\bar x =\frac{(3kg*0m)+(5kg*2.3m)+(7kg*0m)+(6kg*a)}{3kg+5kg+7kg+6kg}=0m

If we solve for a we got:

(3kg*0m)+(5kg*2.3m)+(7kg*0m)+(6kg*a)=0

a=-\frac{(5kg*2.3m)}{6kg}=-1.917m

\bar y =\frac{(3kg*0m)+(5kg*0m)+(7kg*1.5m)+(6kg*b)}{3kg+5kg+7kg+6kg}=0m

(3kg*0m)+(5kg*0m)+(7kg*1.5m)+(6kg*b)=0

And solving for b we got:

b=-\frac{(7kg*1.5m)}{6kg}=-1.75m

So the coordinates for this new particle are:

(x_4,y_4)=(-1.917,-1.75)m

5 0
3 years ago
Other questions:
  • What is the formula for volume using density and mass
    5·2 answers
  • Calculate the wavelengths of the first five members of the Lyman series of spectral lines, providing the result in units Angstro
    6·1 answer
  • What is mean by the value of universal gravitional constant is 6.67×10^-11​
    9·1 answer
  • Witch of the following is not a function of a simple machine
    13·1 answer
  • A triangle can have at most how many right angle?
    8·2 answers
  • Two runners ran side by side, each holding one end of a horizontal pole. How would this affect the direction of the runners? Exp
    9·1 answer
  • All organisms need glucose or a source of
    15·1 answer
  • BRAINLIEST HERE COME GET IT
    12·2 answers
  • Hazel recently read an article that claimed that radio waves can cause electron displacement. Based on
    5·1 answer
  • How are electromagnetic waves used in a bar-code scanner?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!