Answer: They behave the same because, according to the principle of equivalence, the laws of physics work the same in all frames of reference.
Explanation:
According to the equivalence principle postulated by Einstein's Theory of General Relativity, acceleration in space and gravity on Earth have the same effects on objects.
To understand it better, regarding to the equivalence principle, Einstein formulated the following:
A gravitational force and an acceleration in the opposite direction are equivalent, both have indistinguishable effects. Because the laws of physics must be accomplished in all frames of reference.
Hence, according to general relativity, gravitational force and acceleration in the opposite direction (an object in free fall, for example) have the same effect. This makes sense if we deal with gravity not as a mysterious atractive force but as a geometric effect of matter on spacetime that causes its deformation.
Answer:
0.75 m³/s
Explanation:
Applying,
Q = vA.................... Equation 1
Where Q = flow rate of the water, v = velocity of the water, A = area of the pipe.
From the question,
Given: v = 2.5 m/s, A = 0.3 m²
Substitute these values into equation 1
Q = 2.5(0.3)
Q = 0.75 m³/s
Hence the flow rate of water in the pipe is 0.75 m³/s
Answer:
Decline of water levels drought, groundwater pumping Disturbance of the soil digging through soil layers, soil removal, drilling. Point-source of water leaking water/sewer pipes, injection of water.
Explanation:
Answer:
a = 52s²
Explanation:
<u>How to find acceleration</u>
Acceleration (a) is the change in velocity (Δv) over the change in time (Δt), represented by the equation a = Δv/Δt. This allows you to measure how fast velocity changes in meters per second squared (m/s^2). Acceleration is also a vector quantity, so it includes both magnitude and direction.
<u>Solve</u>
We know initial velocity (u = 16), velocity (v = 120) and acceleration (a = ?)
We first need to solve the velocity equation for time (t):
v = u + at
v - u = at
(v - u)/a = t
Plugging in the known values we get,
t = (v - u)/a
t = (16 m/s - 120 m/s) -2/s2
t = -104 m/s / -2 m/s2
t = 52 s