<span>In the field of science, usually, the product of an experiment is
computed ahead to understand if it reached a specific objective. It would reach
greater than 100% of percent yield if the factors include faster reaction rates;
proper handling of the reactants, no outside contaminants, and the procedure of
the experiment is followed smoothly. It would reach lesser than 100% percent yield
if the experiment is not followed, external factors such as contamination from
the environment (wind, moisture, etc). </span>
Answer:
The particles in a liquid are close together (touching) but they are able to move/slide/flow past each other.
Explanation:
Answer:
The vapor pressure of benzaldehyde at 61.5 °C is 70691.73 torr.
Explanation:
- To solve this problem, we use Clausius Clapeyron equation: ln(P₁/P₂) = (ΔHvap / R) (1/T₁ - 1/T₂).
- The first case: P₁ = 1 atm = 760 torr and T₁ = 451.0 K.
- The second case: P₂ = <em>??? needed to be calculated</em> and T₂ = 61.5 °C = 334.5 K.
- ΔHvap = 48.8 KJ/mole = 48.8 x 10³ J/mole and R = 8.314 J/mole.K.
- Now, ln(P₁/P₂) = (ΔHvap / R) (1/T₁ - 1/T₂)
- ln(760 torr /P₂) = (48.8 x 10³ J/mole / 8.314 J/mole.K) (1/451 K - 1/334.5 K)
- ln(760 torr /P₂) = (5869.62) (-7.722 x 10⁻⁴) = -4.53.
- (760 torr /P₂) = 0.01075
- Then, P₂ = (760 torr) / (0.01075) = 70691.73 torr.
So, The vapor pressure of benzaldehyde at 61.5 °C is 70691.73 torr.
Answer:
Ea=5.29 × 10⁴ J/mol
Explanation:
In going from 25 °C (298 K) to 35 °C (308 K), the rate of the reaction doubles. Since the rate of the reaction depends on the rate constant (k), this implies that the rate constant doubles. We can find the activation energy (Ea) using the two-point form of the Arrhenius equation.

Answer:
Explanation:
Sodium is both an electrolyte and mineral. It helps keep the water (the amount of fluid inside and outside the body's cells) and electrolyte balance of the body. Sodium is also important in how nerves and muscles work. Most of the sodium in the body (about 85%) is found in blood and lymph fluid.