Answer:Hess's law states that the change of enthalpy in a chemical reaction (i.e. the heat of reaction at constant pressure) is independent of the pathway between the initial and final states. ... Hess's law allows the enthalpy change (ΔH) for a reaction to be calculated even when it cannot be measured directly.
Explanation:
D. An alkali metal
yeah hope this helps
Answer:
1.21 g of Tris
Explanation:
Our solution if made of a solute named Tris
Molecular weight of Tris is 121 g/mol
[Tris] = 100 mM
This is the concentration of solution:
(100 mmoles of Tris in 1 mL of solution) . 1000
Notice that mM = M . 1000 We convert from mM to M
100 mM . 1 M / 1000 mM = 0.1 M
M = molarity (moles of solute in 1 L of solution, or mmoles of solute in 1 mL of solution). Let's determine the mmoles of Tris
0.1 M = mmoles of Tris / 100 mL
mmoles of Tris = 100 mL . 0.1 M → 10 mmoles
We convert mmoles to moles → 10 mmol . 1mol / 1000mmoles = 0.010 mol
And now we determine the mass of solute, by molecular weight
0.010 mol . 121 g /mol = 1.21 g
Part 1;
The answer is; Carbon dioxide. Approximately 0.8% of the atmosphere is composed of carbon dioxide. It is in the gaseous phase.
Part 2;
The answer is; Combustion. Human activity of burning fossil fuels increases the carbon dioxide in the atmosphere. This has a secondary consequence of warming up the planet because carbon dioxide is a greenhouse gas.
Part 3:
Carbon is conserved in the cycles mostly in plants. Plants take up carbon dioxide in photosynthesis and make organic compounds (carbohydrates). Therefore first acts as carbon sinks. Even the fossils fuels that we burn come from plankton that is major carbon sinks too.
Part 4;
Carbon dioxide in the atmosphere is created by several processes including combustion and respiration. All living things respire out carbon dioxide. Plants take up this carbon dioxide and sequester it. When animals feed on plants they release part of this carbon back to the atmosphere through respiration
You are given two beakers, distilled water, two hot plates, two thermometers and salt. These materials are enough in order to test the effect of salt in the boiling point water. To do this, you set up two beakers. In one of the beakers, you add pure distilled water and nothing else. For the other beaker, you put a solution of salt and water. You place these beakers on separate hot plates and place inside the beakers the thermometers. You heat these substances until they boil and then you measure the boiling points of the substances. You would observe that the boiling point of the solution would have a higher boiling point than the pure liquid.