Answer:
Jim's kinetic energy is 54.67 J.
Explanation:
Given that,
Mass, m = 15 kg
Velocity, V = 2.7 m/s
We need to find the Jim's kinetic energy. We know that when the object is in motion, it has kinetic energy. This energy is given by :


E = 54.67 J
So, Jim's kinetic energy is 54.67 J. Hence, this is the required solution.
Answer:
The mass of the gold bar is 1,544 g
Explanation:
The correct answer for the question that is being presented above is this one:
Phi = BAsin(theta)
<span>1. Phi(i) = BA </span>
<span>2. Phi(f) = 0 </span>
3. EMF = N(phi(i)-phi(f))/deltat
Here are the follow-up questions:
<span>1. What is the total magnitude Phi_initial of the magnetic flux through the coil before it is rotated? </span>
<span>2. What is the magnitude Phi_final of the total magnetic flux through the coil after it is rotated? </span>
<span>3. What is the magnitude of the average emf induced in the coil?</span>