<h3><u>Question</u><u>:</u></h3>
A racing car is travelling at 70 m/s and accelerates at -14 m/s^2. What would the car’s speed be after 3 s?
<h3><u>Statement:</u></h3>
A racing car is travelling at 70 m/s and accelerates at -14 m/s^2.
<h3><u>Solution</u><u>:</u></h3>
- Initial velocity (u) = 70 m/s
- Acceleration (a) = -14 m/s^2
- Time (t) = 3 s
- Let the velocity of the car after 3 s be v m/s
- By using the formula,
v = u + at, we have

- So, the velocity of the car after 3 s is 28 m/s.
<h3><u>Answer:</u></h3>
The car's speed after 3 s is 28 m/s.
Hope it helps
Hello!
Use the <u>second law of Newton:</u>
F = ma
Replacing:
F = 40 kg * 30 m/s^2
Resolving:
F = 1200 N
The force is <u>1200 Newtons.</u>
True. The 7 colors, also called a rainbow, are red, orange, yellow, green, blue, indigo, and violet. This rainbow is formed because the prism bends the white light and spreads it out into the colors it was made of. If there is more you were looking for, comment here.
Answer:
Final speed of car = 12 m/s
Explanation:
We have equation of motion v = u + at, where v is final velocity, u is initial velocity, a is acceleration and t is time.
a) A cart starts from rest and accelerates at 4.0 m/s² for 5.0 s
v = ?
u = 0 m/s
a = 4.0 m/s²
t = 5 s
v = u + at = 0 + 4 x 5 = 20 m/s
b) Then maintains that velocity for 10 s
v = ?
u = 20 m/s
a = 0 m/s²
t = 10 s
v = u + at = 20 + 0 x 10 = 20 m/s
c) Then decelerates at the rate of 2.0 m/s² for 4.0 s
v = ?
u = 20 m/s
a = -2.0 m/s²
t = 4 s
v = u + at = 20 + -2 x 4 = 12 m/s
Final speed of car = 12 m/s
Let, the temperature of Sun's surface = c
So, 5c = 30, 000
c = 30,000 / 5
c = 6,000
In short, Your Answer would be 6000
Hope this helps!