Answer:
Image B represents the force on a positively charged particle caused by an approaching magnet.
Explanation:
The most fundamental law of magnetism is that like shafts repulse each other and dissimilar to posts pull in one another; this can without much of a stretch be seen by endeavoring to put like posts of two magnets together. Further attractive impacts additionally exist. On the off chance that a bar magnet is cut into two pieces, the pieces become singular magnets with inverse shafts. Also, pounding, warming or winding of the magnets can demagnetize them, on the grounds that such dealing with separates the direct game plan of the particles. A last law of magnetism alludes to maintenance; a long bar magnet will hold its magnetism longer than a short bar magnet. The domain theory of magnetism expresses that every single enormous magnet involve littler attractive districts, or domains. The attractive character of domains originates from the nearness of significantly littler units, called dipoles. Iotas are masterminded in such a manner in many materials that the attractive direction of one electron counteracts the direction of another; in any case, ferromagnetic substances, for example, iron are unique. The nuclear cosmetics of these substances is with the end goal that littler gatherings of particles unite as one into zones called domains; in these, all the electrons have the equivalent attractive direction.
Answer:
Explanation:
v² = u² + 2as
v = 0
u = 96 / 3.6 = 26.7 m/s
0² = 26.7² + 2a100
a = -3.5555555... ≈ -3.6 m/s²
the negative sign indicated the acceleration vector opposes the (assumed positive) initial velocity vector direction.
Answer:
magnifying glass
Explanation:
makes objects bigger and smaller / used in science
Answer:
Fy = 14.3 [N]
Explanation:
To be able to solve this problem we must know that the force is a vector and has magnitude and direction, therefore it can be decomposed into the force in the X & y components:
When we have the components on the horizontal and vertical axes we must use the Pythagorean theorem.

where:
F = 15 [N]
Fx = horizontal component = 4.5 [N]
Fy = vertical component [N]
![15=\sqrt{4.5^{2}+F_{y}^{2}}\\ 15^{2}= (\sqrt{4.5^{2}+F_{y}^{2}})^{2} \\225 = 4.5^{2}+F_{y} ^{2}\\ F_{y}^{2} =225 -4.5^{2}\\ F_{y}^{2}=204.75\\F_{y}=\sqrt{204.75}\\ F_{y}=14.3 [N]](https://tex.z-dn.net/?f=15%3D%5Csqrt%7B4.5%5E%7B2%7D%2BF_%7By%7D%5E%7B2%7D%7D%5C%5C%2015%5E%7B2%7D%3D%20%28%5Csqrt%7B4.5%5E%7B2%7D%2BF_%7By%7D%5E%7B2%7D%7D%29%5E%7B2%7D%20%5C%5C225%20%3D%204.5%5E%7B2%7D%2BF_%7By%7D%20%5E%7B2%7D%5C%5C%20%20F_%7By%7D%5E%7B2%7D%20%3D225%20-4.5%5E%7B2%7D%5C%5C%20F_%7By%7D%5E%7B2%7D%3D204.75%5C%5CF_%7By%7D%3D%5Csqrt%7B204.75%7D%5C%5C%20%20F_%7By%7D%3D14.3%20%5BN%5D)
Answer:
option B
Explanation:
When you rub a clear plastic pen with the wool the plastic pen gets charges this phenomenon is known as frictional charging.
Due to rubbing, the pen gets negatively charged.
We know, opposite charge attract each other and the same charge repel each other.
So, when the pen is negatively charged the tape might be positively charged or the tape might be uncharged.
Hence, the correct answer is option B