1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
grin007 [14]
3 years ago
15

What mechanism is most responsible for generating the internal heat of Io that drives its volcanic activity?

Physics
1 answer:
Ghella [55]3 years ago
8 0

Answer:

Tidal heating

Explanation:

Tidal force is the ability of a massive body to produce tides on another body. The tidal force depends on the mass of the body that produces the tides and the distance between the two bodies.

Tidal forces can cause the destruction of a satellite that orbits a planet or a comet that is too close to the Sun or a planet. When the orbiting body crosses the "Roche boundary", the tidal forces along the body are more intense than the cohesion forces that hold the body together.

Tidal friction is the force between the Earth's oceans and ocean floors caused by the gravitational attraction of the Moon. The Earth tries to transport the waters of the oceans with it, while the Moon tries to keep them under it and on the opposite side of the Earth. In the long term, tidal friction causes the Earth's rotation speed to decrease, thus shortening the day. In turn, the Moon increases its angular momentum and gradually spirals away from Earth. Finally, when the day equals the orbital period of the Moon (which will be about 40 times the length of the current day), the process will cease. Subsequently, a new process will begin when the power to raise tides from the Sun takes angular momentum from the Earth-Moon system. The Moon will then spiral towards Earth until it is destroyed when it enters the "Roche boundary."

<u>Tidal heating </u>

It is the warming caused by the tidal action on a planet or satellite. The most important example of tidal heating in the Solar System is the effect of Jupiter on its Io satellite, in which the tidal effects produce such high temperatures that the interior of the satellite melts, producing volcanism.

You might be interested in
A pilot flies in a straight path for 1 h 30 min. She then makes a course correction, heading 10 degrees to the right of her orig
atroni [7]

Answer:

The plane is 2353.7 mi from the starting position.

Explanation:

Please, see the attached figure for a graphic representation of the problem.

We have 2 displacement vectors "a" and "b" and a vector "c" that is the sum of vectors "a" plus "b" (c = a + b). The module of "c" will be the distance of the plane from the starting point.

vector a = (xa, ya)

vector b = (xb, yb)

where “xa” and “xb” are the horizontal components of the vectors “a” and “b” respectively and “ya” and “yb” are the vertical components of each vector.

Then, the vector c = a + b will be:

c = (xa + xb, ya + yb)

The module of a vector is calculated using the following expression for a vector “v”:

module of v = \sqrt{x^{2} + y^{2} }

Then, the module of c will be:

module of c = \sqrt{(xa + xb)^{2} + (ya + yb)^{2}} = distance from starting point

Then, we have to find the components of vectors “a” and “b”

The distance traveled during the first 1.5 hours of the trip is the module of the vector “a”. Then:

module of a = \sqrt{xa^{2} + ya^{2} } = distance traveled during the first 1.5 hours.

The distance can be calculated using the equation of the position of an object moving in a straight line at constant speed:

x = x0 + v * t

where

x = position at time t

x0 = initial position

v = speed

t = time

Considering x0 as the starting point (x0 = 0)

x = 675 mi/h * 1.5 h = 1012.5 mi

Then:

module of a = \sqrt{xa^{2} + ya^{2} } = 1012. 5 mi

Since the plane moves only on the horizontal (see figure), the "y" component of the vector, "ya", will be 0.

Then:

(1012.5 mi)² = xa²

xa = 1012. 5mi

a = (1012.5 mi, 0)

In the same way, we have fo find the components of the vector “b”. The module of “b” will be the distance traveled during this part of the flight:

module of b = \sqrt{xb^{2} + yb^{2} } = x = x0 + v * t

Considering x0 as the point at which the plane turns (x0 = 0)

x = 675 mi / h * 2 h = 1350 mi

Using trigonometry, we can calculate xb and yb (see figure):

sin angle = opposite / hypotenuse

cos angle = adjacent / hypotenuse

In this case:

opposite = yb

adjacent = xb

hypotenuse = module of “b”

Then:

sin 10° = yb / module of “b”

sin 10° * module of “b” = yb

In the same way:

cos 10° * module of “b” = xb

Since module of “b” = 1350 mi

xb = 1329.5 mi

yb = 234.4 mi

b = (1329.5 mi, 234.4 mi)

The vector c = a+b can now be calculated:

c = (xa + xb, ya + yb)

c =(1012.5 mi + 1329.5 mi, 0 mi + 234.4 mi) = (2342 mi, 234.4 mi)

The module of c will be:

module of c = \sqrt{(2342 mi)^{2} + (234.4 mi)^{2} } = 2353.7 mi

The plane is 2353.7 mi from the starting position.

4 0
3 years ago
An 85-kg man plans to tow a 109 000-kg airplane along a runway by pulling horizontally on a cable attached to it. Suppose that h
Lelu [443]

Answer:

The greatest acceleration the man can give the airplane is 0.0059 m/s².

Explanation:

Given that,

Mass of man = 85 kg

Mass of airplane = 109000 kg

Distance = 9.08

Coefficient of static friction = 0.77

We need to calculate the greatest friction force

Using formula of friction

F=\mu mg

Where, m = mass of man

g = acceleration due to gravity

Put the value into the formula

F = 0.77\times85\times9.8

F= 641.41\ N

We need to calculate the acceleration

Using formula of newton's second law

F = ma

a=\dfrac{F}{m}

Put the value into the formula

a=\dfrac{ 641.41}{109000}

a=0.0059\ m/s^2

Hence, The greatest acceleration the man can give the airplane is 0.0059 m/s².

3 0
3 years ago
An object traveling at a constant
mel-nik [20]

Answer:

pi / 2  radians / s

Explanation:

One revolution = 2 pi Radians    in 4 seconds

2 pi  /  4   =   pi/2   radians / s

4 0
1 year ago
A motorcycle skids for a distance of 2.0 m with the icy road pushing on its tires with force of 120 N as its
AnnyKZ [126]

Answer:

-240

Explanation:

7 0
2 years ago
Physicists often measure the momentum of subatomic particles moving near the speed of light in units of MeV/c, where c is the sp
maxonik [38]

Answer:

kg m/s

Explanation:

e = Charge = C

V = Voltage = \dfrac{N}{C}m

c = Speed of light = m/s

Momentum is given by

\dfrac{MeV}{c}=\dfrac{e\times V}{c}\\\Rightarrow \dfrac{MeV}{c}=\dfrac{C\times \dfrac{N}{C}\times m}{m/s}\\\Rightarrow \dfrac{MeV}{c}=Ns\\\Rightarrow \dfrac{MeV}{c}=kg\times \dfrac{m}{s}\times s\\\Rightarrow \dfrac{MeV}{c}=kg\cdot m/s

The unit of MeV/c in SI fundamental units is kg m/s

5 0
2 years ago
Other questions:
  • Calculate the mass defect of the helium nucleus 32he. the mass of neutral 32he is given by mhe=3.016029amu. express your answer
    14·1 answer
  • A luggage handler pulls a 19.0-kg suitcase up a ramp inclined at 34.0 ∘ above the horizontal by a force F⃗ of magnitude 169 N th
    6·1 answer
  • Chloroplasts convert energy from the sun into ________________.Immersive Reader
    8·1 answer
  • The metal with the highest melting temperature is tungsten which melts at around 3400 K. What is the wavelength of the peak of t
    15·1 answer
  • . A telescope is constructed with two lenses separated by a distance of 25 cm. The focal length of the objective is 20 cm. The f
    9·1 answer
  • A drag racer starts from rest and accelerates at 7.4 m/s2. How far will he travel in 2.0 seconds?
    9·1 answer
  • A pupil wants to find the density of an oil. She uses a chemical balance which measures to the nearest gram (g). She places an e
    13·1 answer
  • What is the speed of a person travelling 30 meters in 5 seconds?
    5·2 answers
  • Turn this scentence to repirted speach.<br><br>i ate icecream<br>She said that..........​
    9·2 answers
  • Which factors describe the motion of an object?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!