1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kati45 [8]
2 years ago
10

(6y + 3) minus (3y + 6) when y=7

Mathematics
2 answers:
Yuliya22 [10]2 years ago
8 0

Answer:

72 I think, I don't rly know use a calculator lol

never [62]2 years ago
4 0

Answer:

y

Step-by-step explanation:

((((2•3y3) -  22y2) -  3y) -  —) -  2

                               y    

STEP

4

:

Rewriting the whole as an Equivalent Fraction

4.1   Subtracting a fraction from a whole

Rewrite the whole as a fraction using  y  as the denominator :

                      6y3 - 4y2 - 3y     (6y3 - 4y2 - 3y) • y

    6y3 - 4y2 - 3y =  ——————————————  =  ————————————————————

                            1                     y          

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

STEP

5

:

Pulling out like terms

5.1     Pull out like factors :

  6y3 - 4y2 - 3y  =   y • (6y2 - 4y - 3)

Trying to factor by splitting the middle term

5.2     Factoring  6y2 - 4y - 3

The first term is,  6y2  its coefficient is  6 .

The middle term is,  -4y  its coefficient is  -4 .

The last term, "the constant", is  -3

Step-1 : Multiply the coefficient of the first term by the constant   6 • -3 = -18

Step-2 : Find two factors of  -18  whose sum equals the coefficient of the middle term, which is   -4 .

     -18    +    1    =    -17

     -9    +    2    =    -7

     -6    +    3    =    -3

     -3    +    6    =    3

     -2    +    9    =    7

     -1    +    18    =    17

Observation : No two such factors can be found !!

Conclusion : Trinomial can not be factored

Adding fractions that have a common denominator :

5.3       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

y • (6y2-4y-3) • y - (6)     6y4 - 4y3 - 3y2 - 6

————————————————————————  =  ———————————————————

           y                          y        

Equation at the end of step

5

:

 (6y4 - 4y3 - 3y2 - 6)    

 ————————————————————— -  2

           y              

STEP

6

:

Rewriting the whole as an Equivalent Fraction :

6.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  y  as the denominator :

        2     2 • y

   2 =  —  =  —————

        1       y  

Checking for a perfect cube :

6.2    6y4 - 4y3 - 3y2 - 6  is not a perfect cube

Trying to factor by pulling out :

6.3      Factoring:  6y4 - 4y3 - 3y2 - 6

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -3y2 - 6

Group 2:  6y4 - 4y3

Pull out from each group separately :

Group 1:   (y2 + 2) • (-3)

Group 2:   (3y - 2) • (2y3)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

6.4    Find roots (zeroes) of :       F(y) = 6y4 - 4y3 - 3y2 - 6

Polynomial Roots Calculator is a set of methods aimed at finding values of  y  for which   F(y)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  y  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  6  and the Trailing Constant is  -6.

The factor(s) are:

of the Leading Coefficient :  1,2 ,3 ,6

of the Trailing Constant :  1 ,2 ,3 ,6

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        1.00    

     -1       2        -0.50        -5.88    

     -1       3        -0.33        -6.11    

     -1       6        -0.17        -6.06    

     -2       1        -2.00        110.00    

Note - For tidiness, printing of 13 checks which found no root was suppressed

Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

6.5       Adding up the two equivalent fractions

(6y4-4y3-3y2-6) - (2 • y)      6y4 - 4y3 - 3y2 - 2y - 6

—————————————————————————  =  ————————————————————————

            y                            y            

Polynomial Roots Calculator :

6.6    Find roots (zeroes) of :       F(y) = 6y4 - 4y3 - 3y2 - 2y - 6

    See theory in step 6.4

In this case, the Leading Coefficient is  6  and the Trailing Constant is  -6.

The factor(s) are:

of the Leading Coefficient :  1,2 ,3 ,6

of the Trailing Constant :  1 ,2 ,3 ,6

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        3.00    

     -1       2        -0.50        -4.88    

     -1       3        -0.33        -5.44    

     -1       6        -0.17        -5.73    

     -2       1        -2.00        114.00    

Note - For tidiness, printing of 13 checks which found no root was suppressed

Polynomial Roots Calculator found no rational roots

Final result :

 6y4 - 4y3 - 3y2 - 2y - 6

 ————————————————————————

            y            

You might be interested in
Solve ( 9 - r) ( 2 - 3r) using the FOIL method. QUICK PLEASE!
bazaltina [42]

\huge\text{Hey there!}

\textsf{(9 - r)(2 - 3r)}

\textsf{= 9(2) + 9(-3r) + 2(-r) + (-r)(-3r)}

\mathsf{= 18 - 27r - 2r + 3r^2}

\mathsf{= 3r^2 + 18 - 27r - 2r}

\boxed{\large\text{COMBINE the LIKE TERMS}}

\mathsf{= 3r^2 + 18 + (-27r - 2r)}

\mathsf{= 3r^2 + 18 - 29r}

\mathsf{= 3r^2 - 29r + 18}

\boxed{\large\textsf{Therefore, your answer is: \large\boxed{\mathsf{3r^2 - 29r + 18}}}}\large\checkmark

\huge\text{Good luck on your assignment \& enjoy your day!}

~\frak{Amphitrite1040:)}

7 0
2 years ago
Included side between
olga55 [171]
Whats your question? And I will try to help you
4 0
2 years ago
A coin is tossed 40 times and shows heads 23 times. Calculate the experimental probability of the coin showing heads.
Over [174]

Answer:

0.575

Step-by-step explanation:

There are two types of probabilities:

1. Theoretical Probability

2. Experimental Probability

The probability based on mathematical theories is called theoretical probability. It is not always true. i.e. the probability of getting a head in a toss of coin is 1/2 or 0.5 or 50%

Experimental probability is based on experiments. Experimental probability is always going to change whenever the experiment is performed.

The theoretical probability of getting a head while tossing a coin will always be 50% while experimental probability might be different the next time, experiment is performed.

In this case, the experimental probability will be 23/40 or 0.575 ..

8 0
3 years ago
Can someone help me?
OverLord2011 [107]

Answer:

52

Step-by-step explanation:

180-90-38=52

8 0
3 years ago
Teresa is buying glitter markers to put in gift bags The table shows the relationship between the number of gift bags and the nu
Alenkinab [10]
A dependent variable is a value that depends on how the other variables are controlled or manipulated.
Meanwhile, an independent variable, is as what its name suggests, is independent and doesn't change based on the value of other variables.
a.) The dependent variable is the number of glitter markers
b.) The independent variable is the number of gift bags
c.) The number of glitter markers Teresa needs to buy depends on the number of gift bags she has. She has to multiply 
d.) The relationship is additive. The more gift bags Teresa has, the more glitter markers she has to buy. 
5 0
3 years ago
Other questions:
  • What is greater 3 pounds or 50 ounces
    13·1 answer
  • What is the factored form of this trinomial?
    11·1 answer
  • How do you solve this ?
    13·1 answer
  • Find the missing exponent.
    6·2 answers
  • Which is the slowest reading rate?
    7·1 answer
  • Find the distance ab give your answer correct to 1. Decimal place
    11·1 answer
  • Draw a graph of the linear equations x – 4y + 10 = 0 and x + 4y – 10 = 0. Find the coordinates of the vertices of the triangle f
    5·2 answers
  • 9. Write the equation of the line that is parallel to the line 5x - 4y = 4 and passes through the
    15·1 answer
  • 1) Katie baked 215 cookies that she wants to divide equally among her 32 classmates. How many whole cookies will each student ge
    12·1 answer
  • Choose the letter of the equation from the drop down
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!