Answer:
A velocity time graph shows the change of velocity of an object with respect ot time. If the slope of the graph is increasing in the postive region, it means that the velocity is changing, if the slope is decreasing, it means the the velocity is decreasing, but the object is moving in the same direction (positve direction).
If this slope intersects the graph at x-axis, it means that the body has 0 velocity and has become still. After that, if the line enters in the negative region, it means that its velocity is started to increases again, but the body is movinging in the opposite direction (negative direction)
<span>The two factors that act on parachutes are gravity and air resistance, which is also called drag. Gravity acts as a force to pull parachutes down to the surface of the Earth, while air resistance generates movement in the opposite direction of the falling parachute, and essentially pushes the parachute upward. hope this helps!:)</span>
Answer:
Please see answer in explanation
Explanation:
1. Since each molecule has three kinetic degrees of freedom (can move in three independent directions), the gas must have 3N DoFs.
2. Each molecule has the three kinetic degrees of freedom the monotonic atom has moving without rotating but it can also spin. There are three axes for it to spin around so we would expect three rotational degrees of freedom, but as were as above, the one about the diatomic molecule's axis doesn't count because of quantum. So we have two rotational DoFs and three kinetic, for a total of 5 per molecules. So the gas will have 5N DoFs.
3.When a spring vibrates it has two DoFs, its KE and its PE, so adding 1 vibration adds 2 DoFs per molecule, giving 7 per molecule and giving thegas 7N DoFs.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
Weight = electric force
<span>mg = qE </span>
<span>6.64x10^-27 x 9.81 = (2 x 1.60x10^-19) E
</span>qE =mg,
<span>E = mg/q = 6.64•10^-27•9.8/2•1.6•10^-19 =2.03•10^-7 V/m</span>
True statements that reflect why infants experience more fluid and electrolyte changes are that dehydration can upset the balance of electrolytes in an infant or child and the newborn is at risk of excessive water loss and hypernatremia as the result of high evaporative water loss through the skin.
As infants are not used to the environment around , they are more sensible towards problems such as Dehydration because of fast metabolism.
Dehydration can upset the balance of electrolytes in an infant or child. Children are especially vulnerable to dehydration due to their small size and fast metabolism, which causes them to replace water and electrolytes at a faster rate than adults.
Infants are particularly prone to the effects of dehydration because of their greater baseline fluid requirements (due to a higher metabolic rate), higher evaporative losses (due to a higher ratio of surface area to volume), and inability to communicate thirst or seek fluid.
The newborn is at risk of excessive water loss and hypernatremia as the result of high evaporative water loss through the skin, insensible water loss (IWL), as well as decreased capacity to concentrate the urine.
To Learn more about dehydration here
brainly.com/question/12261974?referrer=searchResults
#SPJ4