1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serjik [45]
3 years ago
13

¿Que es el equilibrio termico?

Physics
2 answers:
Sunny_sXe [5.5K]3 years ago
6 0

Answer:

Two physical systems are in thermal equilibrium if there is no net flow of thermal energy between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics.

Explanation:

anygoal [31]3 years ago
6 0

Answer: ^^

Explanation:

You might be interested in
Name the device used for measuring weight​
Tpy6a [65]

Answer:

spring  scale

Explanation:

5 0
3 years ago
An organ pipe is open at both ends. It is producing sound
ozzi

To solve this problem we will apply the concepts related to the wavelength of its third harmonic.

It describes that the wavelength is equivalent to

\lambda = \frac{2}{3}L

Here,

\lambda = Wavelength

The wavelength is in turn described as a function that depends on the change of the speed as a function of the frequency, that is to say

\lambda = \frac{v}{f}

In this case the speed is equivalent to the speed of sound and the frequency was previously given, therefore

\lambda = \frac{343}{262}

\lambda = 1.3091m

Finally the length of the pipe would be

L= \frac{3}{2}(1.3091)

L = 1.963m

3 0
3 years ago
Math phys can i have help 7-10
Vladimir79 [104]

Answer:

007. 4. 124.091

008. 9. 0.232679738562091

009. 1. 66.8457608738846

010. 3. 14.2 N

Explanation:

007. Speed of a wave is the product of its wavelength and it frequency.

v = λ f

For a given velocity, the minimum frequency occurs at the maximum wavelength.

For a standing wave, the distance between the nodes (fixed points that don't oscillate) is a multiple of half the wavelength.

L = k/2 λ

The wavelength is a maximum at k=1 (also known as the first harmonic).

L = 1/2 λ

λ = 2L

Substituting and solving for f:

v = 2L f

f = v / (2L)

f = 546 m/s / (2 × 2.2 m)

f = 124.091 Hz

008. The sound travels from the dolphin to the ocean floor, then back to the dolphin.  So it travels a total distance of 2 × 178 m = 356 m.  At a speed of 1530 m/s, the time it takes for the sound to travel this distance is:

t = d / v

t = 356 m / 1530 m/s

t = 0.232679738562091 s

009. Sound intensity in decibels is:

I(db) = 10 log(I / I₀)

where I is the sound intensity (W/m²) and I₀ is the threshold of hearing.

We know that the sound intensity I is proportional to the number of cars per minute.  If we say n is the number of cars per minute, and k is the constant of proportionality, then:

I(db) = 10 log(kn / I₀)

When n = 132, I = 73.

73 = 10 log(132k / I₀)

7.3 = log(132k / I₀)

10^7.3 = 132k / I₀

k / I₀ = (10^7.3) / 132

k / I₀ = 151156.236

So the equation for intensity in decibels is:

I(db) = 10 log(151156.236 n)

When n = 32:

I(db) = 10 log(151156.236 × 32)

I(db) = 66.8457608738846

010. For a vibrating string, the tension is:

T = v² m/L

where v is the speed and m/L is the mass per length of the string.

When v = 18.6, T = 6.43.

6.43 = (18.6)² m/L

m/L = 0.01859

So the equation is:

T = 0.01859 v²

When v = 27.6:

T = 0.01859 (27.6)²

T = 14.2 N

4 0
3 years ago
Brlan is repairing an old alarm clock. He needs to replace a device that converts the electric energy into sound energy. Which o
Brums [2.3K]
The answer is buzzer
3 0
3 years ago
A circular disc of mass 20kg and radius 15cm is mounted in an horizontal cylindrical axle of radius
disa [49]

Using the concepts of energy, rotational Newton's second law and rotational kinematics we can find the kinematic energy of the system formed by the disk and the cylindrical axis

          KE = 0.23 J

given parameters

  • Disk radius R = 15 cm = 0.15 m
  • Cylinder radius r = 1.5 cm = 0.0015 m
  • Disk mass M = 20 kg
  • Time t = 1.2 s
  • Force F = 12 N

to find

  • Kinetic energy (KE)

This exercise must be solved in parts:

1st part. Endowment kinetic energy is the energy due to the circular motion of an object and is described by the equation

         KE = ½ I w²

Where KE is the kinetic energy, I the moment of inertia and w the angular velocity

The moment of inertia is a magnitude that measures the inertia for rotational movement, it is a scalar quantity, therefore it is additive. In this system it is composed of two bodies, the disk and the cylindrical axis, for which the total moment of inertia it is

         I_{ total} = I_{ disk} + I_{ cylinder}

the moments of inertia with respect to an axis passing through the center of mass are tabulated

disk          I_{disk} = ½ M R²

cylinder   I_{cylinder} = ½ m r²

where M and m are the masses of the disk and cylinder respectively, R and r their radii

         I_{total} = ½ (M R² + m r²) = ½ M R² ( 1 + \frac{m}{M} \ (\frac{r}{R})^2 )

         I_{total} = ½ M R² ( 1+ \frac{m}{20}  (\frac{0.015}{0.15} )^2 ) = \frac{1}{2} M R² (1 + 0.005 m)

As the shaft mass  is much lighter than the disk mass , the last term is very small, which is why we despise it.

         I_{total} = ½ M R²

2nd part. Let's use Newton's second law for endowment motion

        τ = I α

        α = \frac{\tau }{I_{total}}l

        τ = F R

        α = \frac{F \ R}{I_{total}}

With the rotational kinematics expressions, we assume that the system starts from rest (w₀ = 0)

        w = w₀ + α  t

where w is the angular velocity, alpha is the angular acceleration and t is the time

        w = 0 + \frac{\tau }{I_{total}} \ t

we substitute in the kinetic energy equation

        KE = ½ I_{total}  ( \frac{ \tau }{I_{total}} \ t )²

        KE = ½ \frac{ \tau^2 }{I_{total}} \ t^2

let's substitute

        KE = \frac{F^2 \ R^4}{M \ R^2 } \ t^2

        KE = F² R² t² / M

let's calculate

        KE = 12² 0.15² 1.2² / 20

        KE = 0.23 J

With the concepts of energy and rotational kinematics we can find the kinetic energy of the system is

       KE = 0.23 j

learn more about rotational kinetic energy here:

brainly.com/question/20261989

4 0
3 years ago
Other questions:
  • A uniform steel rod has mass 0.400 kg and length 50.0 cm and is horizontal. A uniform sphere with radius
    10·1 answer
  • When aluminum-27 is bombarded with a neutron, a gamma ray is emitted. what radioactive isotope is produced?
    10·2 answers
  • A human being can be electrocuted if a current as small as 50 mA passes near the heart. An electrician working with sweaty hands
    12·1 answer
  • 4. Jed drops a 10 kg box off of the Eiffel Tower. After 2.6 seconds, how fast is the box moving? (Neglect air resistance.)
    6·1 answer
  • An open-pipe resonator has a length of 2.39 m. Calculate the frequency of its third harmonic if the speed of sound is 343 m/s.
    8·1 answer
  • What do you think would happen to the boiling point of water if you were to cook pasta near the Dead Sea in Israel, which is 1,2
    8·2 answers
  • Hi, I have a question if I calculate the average force that must be exerted on a 0.145 kg baseball for me to give it an accelera
    10·1 answer
  • Explain the working principle of the moving coil coil galvanometer​
    10·1 answer
  • Answers? I’m very bad in physics
    15·1 answer
  • A skater can spin faster by pulling her arms closer to her body or spin slower by spreading her arms out from her body. This is
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!