Answer: a= 37m
Explanation: V= 15 m/s (Velocity) t= 0.41s (time) formula: a= v/t
15 m/s / 0.41 (15 divided by 0.41) = 36.583m
There are 2 significant digits, 36, you look at the third digit, either round up or down in this case up to 36. a= 37m
Explanation:
Given that,
Mass if the rock, m = 1 kg
It is suspended from the tip of a horizontal meter stick at the 0-cm mark so that the meter stick barely balances like a seesaw when its fulcrum is at the 12.5-cm mark.
We need to find the mass of the meter stick. The force acting by the stone is
F = 1 × 9.8 = 9.8 N
Let W be the weight of the meter stick. If the net torque is zero on the stick then the stick does not move and it remains in equilibrium condition. So, taking torque about the pivot.

W = 3.266 N
The mass of the meters stick is :

So, the mass of the meter stick is 0.333 kg.
Twin type has less to do with what twins look like and more to do with how they formed.
Identical, or monozygotic, twins form when a single fertilized egg splits and develop as two babies in the uterus. Identical twins originate from the same combination of cells and have the same genetic origin. They are ALWAYS the same sex, two girls/two boys. They may look very similar and it may be difficult to tell them apart.
Fraternal, or dizygotic, twins are two individuals from the same pregnancy who from TWO SEPARATE eggs fertilized by TWO SEPARATE SPERM. The genetic similarity between fraternal twins is the same as any two siblings, about 50 percent. They can be boys, girls, or one of each.
Answer:
D. Humidity refers to the amount of water vapor in the air
Answer:


Explanation:
Given:
Let mass of the particle B be, 
then the mass of particle A, 
Energy stored in the compressed spring, 
Now when the compression of the particles with the spring is released, the spring potential energy must get converted into the kinetic energy of the particles and their momentum must be conserved.
Kinetic energy:

.............................(1)
<u>Using the conservation of linear momentum:</u>

.............................(2)
Put the value of
from eq. (2) into eq. (1)

...........................(3)
<u>Now the kinetic energy of particle B:</u>



Put the value of
form eq. (3) into eq. (1):

<u>Now the kinetic energy of particle A:</u>
<u />
<u />
<u />
<u />
