The mass of an object stays the same wherever it is, but its weight can change. This happens if the object goes where the gravitational field strength is different from the gravitational field strength on Earth, such as into space or another planet.
Answer:
A point on the outside rim will travel 157.2 meters during 30 seconds of rotation.
Explanation:
We can find the distance with the following equation since the acceleration is cero (the disk rotates at a constant rate):

Where:
v: is the tangential speed of the disk
t: is the time = 30 s
The tangential speed can be found as follows:

Where:
ω: is the angular speed = 100 rpm
r: is the radius = 50 cm = 0.50 m
Now, the distance traveled by the disk is:

Therefore, a point on the outside rim will travel 157.2 meters during 30 seconds of rotation.
I hope it helps you!
Acceleration = force / mass.
A = 100/50 = 2 m/s^2 .