We can solve the problem by using the first law of thermodynamics, which states that:

where

is the change in internal energy of the system
Q is the heat absorbed by the system
W is the work done by the system
In our problem, the heat absorbed by the system is Q=+194 kJ, while the work done is W=-120 kJ, where the negative sign means the work is done by the surroundings on the system. Therefore, the variation of internal energy is
I guess it’s B cause that maybe is the output
Current = charge/time = (2 c)/(0.00024 sec)= 8,333 Amps !
1.) Law of Induction.
2.) Increase Winding Count
To solve this problem it is necessary to apply the concepts related to heat exchange in the vegetable and water.
By definition the exchange of heat is given by

where,
m = mass
c = specific heat
= Change in temperature
Therefore the total heat exchange is given as


Our values are given as,
Total mass is
= 200lb ,however the mass of solid vegetable and water is given as,



Replacing at our equation we have,



Therefore the heat removed is 22411.2 Btu