You can get the answer on quizlet or google
Answer:
Scientists know that today the Earth's magnetic field is powered by the solidification of the planet's liquid iron core. The cooling and crystallization of the core stirs up the surrounding liquid iron, creating powerful electric currents that generate a magnetic field stretching far out into space.
Answer:
k= 1.925×10^-4 s^-1
1.2 ×10^20 atoms/s
Explanation:
From the information provided;
t1/2=Half life= 1.00 hour or 3600 seconds
Then;
t1/2= 0.693/k
Where k= rate constant
k= 0.693/t1/2 = 0.693/3600
k= 1.925×10^-4 s^-1
Since 1 mole of the nuclide contains 6.02×10^23 atoms
Rate of decay= rate constant × number of atoms
Rate of decay = 1.925×10^-4 s^-1 ×6.02×10^23 atoms
Rate of decay= 1.2 ×10^20 atoms/s
I believe a solution of Sn(NO3)2 can not be stored in an aluminium container because Aluminium is higher in the reactivity series compared to Tin (Sn). Therefore, Aluminium is more reactive than Tin and hence aluminium will displace Tin from its salt forming Aluminium nitrate and Tin metal. Thus storing Tin nitrate in an aluminium container will cause the "eating away' of the container.