Answer:
94.2 g/mol
Explanation:
Ideal Gases Law can useful to solve this
P . V = n . R . T
We need to make some conversions
740 Torr . 1 atm/ 760 Torr = 0.974 atm
100°C + 273 = 373K
Let's replace the values
0.974 atm . 1 L = n . 0.082 L.atm/ mol.K . 373K
n will determine the number of moles
(0.974 atm . 1 L) / (0.082 L.atm/ mol.K . 373K)
n = 0.032 moles
This amount is the weigh for 3 g of gas. How many grams does 1 mol weighs?
Molecular weight → g/mol → 3 g/0.032 moles = 94.2 g/mol
If one or more nucleotide pairs are deleted from a DNA strand, this is known as a frameshift mutation
<h3>
Define Frameshift Mutation</h3>
Insertions or deletions in the genome that are not multiples of three nucleotides are referred to as frameshift mutations. They are a particular class of insertion-deletion (indel) alterations that are present in polypeptides' coding sequences. Here, there are no multiples of three in the number of nucleotides that are added to or subtracted from the coding sequence. They may result from really basic alterations like the insertion or deletion of a single nucleotide.
<h3>
Frameshift mutations' effects</h3>
One of the most harmful modifications to a protein's coding sequence is a frameshift mutation. They are quite prone to produce non-functional proteins that frequently interfere with a cell's metabolic processes and result in significant alterations to polypeptide length and chemical makeup. Frameshift mutations can cause the mRNA to stop translating too soon and create an extended polypeptide.
Learn more about Frameshift mutations here:-
brainly.com/question/12732356
#SPJ4
True. Covalent bonds involve sharing electrons to create a full valence shell.
Answer:
Nucleic acid is an important class of macromolecules found in all cells and viruses. Deoxyribonucleic acid (DNA) encodes the information the cell needs to make proteins.
A related type of nucleic acid, called ribonucleic acid (RNA), comes in different molecular forms that participate in protein synthesis.