<u>Answer:</u> The ion that is expected to have a larger radius than the corresponding atom is chlorine.
<u>Explanation:</u>
There are two types of ions:
- <u>Cations:</u> They are formed when an atom looses its valence electrons. They are positive ions.
- <u>Anions:</u> They are formed when an atom gain electrons in its outermost shell. They are negative ions.
For positive ions, the removal of electron increases the nuclear charge for an outermost electron because the outermost electrons are more strongly attracted by the nucleus. So, the effective nuclear charge increases for cations and thus, the size of the cation will be smaller than that of the corresponding atom.
For negative ions, the addition of electron decreases the nuclear charge for an outermost electron because the outermost electrons are less strongly attracted by the nucleus. So, the effective nuclear charge decreases for anions and thus, the size of the anion will be larger than that of the corresponding atom.
For the given options:
<u>Option a:</u> Chlorine
Chlorine gains 1 electron and form
ion
<u>Option b:</u> Sodium
Sodium looses 1 electron and form
ion
<u>Option c:</u> Copper
Copper looses 2 electrons and form
ion
<u>Option d:</u> Strontium
Strontium looses 2 electrons and form
ion
Hence, the ion that is expected to have a larger radius than the corresponding atom is chlorine.
Answer:
ΔG = -6.5kJ/mol at 500K
Explanation:
We can find ΔG of a reaction using ΔH, ΔS and absolute temperature with the equation:
ΔG = ΔH - TΔS
Computing the values in the problem:
ΔG = ?
ΔH = 2kJ/mol
T = 500K
And ΔS = 0.017kJ/(K•mol)
Replacing:
ΔG = 2kJ/mol - 500K*0.017kJ/(K•mol)
ΔG = 2kJ/mol - 8.5kJ/mol
<h3>ΔG = -6.5kJ/mol at 500K</h3>
If a solution is saturated, that means it already posses the maximum number of solutes thus have been dissolved in it, and thus the concentration cannot be increased.
Answer:
You didn't show which element it is. The proton is the atomic number, the electron is the same number of protons, and the neutron is the atomic mass rounded to the nearest whole number minus the proton.
Explanation: