Answer:
ΔH°rxn = -827.5 kJ
Explanation:
Let's consider the following balanced equation.
2 PbS(s) + 3 O₂(g) → 2 PbO(s) + 2 SO₂(g)
We can calculate the standard enthalpy of reaction (ΔH°rxn) from the standard enthalpies of formation (ΔH°f) using the following expression.
ΔH°rxn = [2 mol × ΔH°f(PbO(s)) + 2 mol × ΔH°f(SO₂(g)
)] - [2 mol × ΔH°f(PbS(s)) + 3 mol × ΔH°f(O₂(g)
)]
ΔH°rxn = [2 mol × ΔH°f(PbO(s)) + 2 mol × ΔH°f(SO₂(g)
)] - [2 mol × ΔH°f(PbS(s)) + 3 mol × ΔH°f(O₂(g)
)]
ΔH°rxn = [2 mol × (-217.32 kJ/mol) + 2 mol × (-296.83)] - [2 mol × (-100.4) + 3 mol × 0 kJ/mol]
ΔH°rxn = -827.5 kJ
The mass number of an atom is basically the total number of protons and neutrons.
An intrinsic property is independent of how much of a material is present and is independent of the form of the material, one large piece or a collection of small particles. Intrinsic properties are dependent mainly on the fundamental chemical composition and structure of the material.
Answer:
A and C
Explanation:
The term formula unit is use to indicate Simple-Whole Ratios of ions in a compound. KEY WORD! RATIO!
The answer would be uranium and thorium. When an alpha ejects a particle, it will create a new atom. So, when uranium ejects an alpha particle, it will produce thorium. They call this process as the alpha decay. Alpha decay often happens on atoms that are abundant nuclei such as uranium, radium, and thorium.